M. S. Christoffersen, R. Grapenthin, M. Angarita, R. C. Aster, J. Chaput, P. R. Kyle
{"title":"Inferring Eruption Dynamics From Seismometer Tilt: A Case Study of Erebus and Augustine Volcanoes","authors":"M. S. Christoffersen, R. Grapenthin, M. Angarita, R. C. Aster, J. Chaput, P. R. Kyle","doi":"10.1029/2024JB030657","DOIUrl":null,"url":null,"abstract":"<p>Broadband seismometers are sensitive to tilt as a consequence of their design. We used broadband data from Erebus volcano on Ross Island, Antarctica, and Augustine volcano in Lower Cook Inlet, Alaska, to make tilt measurements associated with individual volcanic explosions and investigate the near-terminal magmatic system configuration of each volcano. At Erebus volcano we found no evidence of tilt associated with the classic Strombolian eruptions from the lava lake. Tilt has been observed preceding Strombolian eruptions at volcanoes. The lack of tilt at Erebus is evidence that its conduit system lacks sufficient viscous plugging or mechanical restrictions to generate slug-transport or explosion-related forces large enough to produce measurable tilt. At Augustine volcano we measured tilt changes associated with 13 events during the explosive phase of its 2006 eruption. We used the tilt changes to invert for a dual deformation source model of a depressurizing open conduit above a depressurizing prolate spheroid. This deflation source geometry is in agreement with an existing magmatic system model developed from petrologic, seismic, and Global Positioning System data. This further supports this model while highlighting the capabilities of seismometer ground tilt measurements as independent model constraints.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030657","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030657","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Broadband seismometers are sensitive to tilt as a consequence of their design. We used broadband data from Erebus volcano on Ross Island, Antarctica, and Augustine volcano in Lower Cook Inlet, Alaska, to make tilt measurements associated with individual volcanic explosions and investigate the near-terminal magmatic system configuration of each volcano. At Erebus volcano we found no evidence of tilt associated with the classic Strombolian eruptions from the lava lake. Tilt has been observed preceding Strombolian eruptions at volcanoes. The lack of tilt at Erebus is evidence that its conduit system lacks sufficient viscous plugging or mechanical restrictions to generate slug-transport or explosion-related forces large enough to produce measurable tilt. At Augustine volcano we measured tilt changes associated with 13 events during the explosive phase of its 2006 eruption. We used the tilt changes to invert for a dual deformation source model of a depressurizing open conduit above a depressurizing prolate spheroid. This deflation source geometry is in agreement with an existing magmatic system model developed from petrologic, seismic, and Global Positioning System data. This further supports this model while highlighting the capabilities of seismometer ground tilt measurements as independent model constraints.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.