Creep-fatigue properties and life prediction of TP321 austenitic stainless steel at high temperature

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chong Zhen, Chenwei Zhang, Shanghao Chen, Hongchang Wang, Ling Li, Junsen Lin, Lijia Luo, Shiyi Bao, Xujia Wang
{"title":"Creep-fatigue properties and life prediction of TP321 austenitic stainless steel at high temperature","authors":"Chong Zhen,&nbsp;Chenwei Zhang,&nbsp;Shanghao Chen,&nbsp;Hongchang Wang,&nbsp;Ling Li,&nbsp;Junsen Lin,&nbsp;Lijia Luo,&nbsp;Shiyi Bao,&nbsp;Xujia Wang","doi":"10.1007/s10853-025-10765-1","DOIUrl":null,"url":null,"abstract":"<div><p>TP321 austenitic stainless steel exhibits excellent strength, toughness, and high-temperature corrosion resistance, making it a preferred material for critical components in high-temperature environments, particularly within the nuclear industry. When a nuclear power plant is operated in a high-temperature environment, its critical components are subjected to creep-fatigue interaction. In order to study the creep-fatigue performance of TP321 austenitic stainless steel at high temperatures, creep-fatigue tests are conducted and combine with microstructure inspection to analyze the effects of temperature, holding time and strain amplitude on the deformation and damage behavior of TP321 austenitic stainless steel. Then, three different life prediction models are used to predict the life of the creep-fatigue tests. The results show that increasing the test temperature, holding time and strain amplitude decreases the creep-fatigue life of the material. A tendency for cracks and cavities to promote each other’s expansion is observed, which is an important reason for the decrease in creep-fatigue life. Of the three life prediction models, the modified strain energy density (MSEDE) exhaustion model gives the most accurate lifespan prediction.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 12","pages":"5603 - 5622"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10765-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

TP321 austenitic stainless steel exhibits excellent strength, toughness, and high-temperature corrosion resistance, making it a preferred material for critical components in high-temperature environments, particularly within the nuclear industry. When a nuclear power plant is operated in a high-temperature environment, its critical components are subjected to creep-fatigue interaction. In order to study the creep-fatigue performance of TP321 austenitic stainless steel at high temperatures, creep-fatigue tests are conducted and combine with microstructure inspection to analyze the effects of temperature, holding time and strain amplitude on the deformation and damage behavior of TP321 austenitic stainless steel. Then, three different life prediction models are used to predict the life of the creep-fatigue tests. The results show that increasing the test temperature, holding time and strain amplitude decreases the creep-fatigue life of the material. A tendency for cracks and cavities to promote each other’s expansion is observed, which is an important reason for the decrease in creep-fatigue life. Of the three life prediction models, the modified strain energy density (MSEDE) exhaustion model gives the most accurate lifespan prediction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信