{"title":"The potential of novel arsenic nanoparticles containing metformin (MTF@As NPs): a study on their antioxidant and cytotoxic properties","authors":"Mojtaba Shakibaie, Seyed Soheil Hosseininasab, Soudabe Riahi-Madvar, Mahboubeh Adeli-Sardou, Fereshteh Jabari-Morouei, Hamid Forootanfar","doi":"10.1186/s13065-025-01419-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the present research, arsenic nanoparticles containing metformin (MTF@As NPs) were synthesized by subjecting a mixture of As<sub>2</sub>O<sub>3</sub> and sodium borohydride solution to microwave irradiation in the presence of metformin. The physicochemical properties of the prepared nanoparticles were analyzed using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). The nanoparticles were assessed for their antioxidant potential, hemocompatibility, and cytotoxic effects. Based on the study’s findings, it was found that MTF@As NPs have a size range of 14–38 nm. DPPH scavenging and iron-reducing assays demonstrated that MTF@As NPs exhibited significantly higher antioxidant activity than As NPs (80–1280 µg/mL). The study also revealed that nanoparticles were compatible materials that did not induce significant hemolysis in RBCs. According to the study, the concentration required for death of half of the cells (IC<sub>50</sub>) treated with MTF@As NPs after 24 h was found to be 33.5 ± 2.6 µg/mL and 5.7 ± 0.3 µg/mL for MCF-7, and NIH3T3 cells, respectively. Notably, MTF@As NPs exhibited significantly higher toxicity against MCF-7 cells at higher concentrations (40–1280 µg/mL). This study provides insights into the cytotoxic properties of MTF@As NPs, additional investigation is necessary to fully understand these nanoparticles’ underlying biological mechanisms.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01419-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01419-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present research, arsenic nanoparticles containing metformin (MTF@As NPs) were synthesized by subjecting a mixture of As2O3 and sodium borohydride solution to microwave irradiation in the presence of metformin. The physicochemical properties of the prepared nanoparticles were analyzed using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). The nanoparticles were assessed for their antioxidant potential, hemocompatibility, and cytotoxic effects. Based on the study’s findings, it was found that MTF@As NPs have a size range of 14–38 nm. DPPH scavenging and iron-reducing assays demonstrated that MTF@As NPs exhibited significantly higher antioxidant activity than As NPs (80–1280 µg/mL). The study also revealed that nanoparticles were compatible materials that did not induce significant hemolysis in RBCs. According to the study, the concentration required for death of half of the cells (IC50) treated with MTF@As NPs after 24 h was found to be 33.5 ± 2.6 µg/mL and 5.7 ± 0.3 µg/mL for MCF-7, and NIH3T3 cells, respectively. Notably, MTF@As NPs exhibited significantly higher toxicity against MCF-7 cells at higher concentrations (40–1280 µg/mL). This study provides insights into the cytotoxic properties of MTF@As NPs, additional investigation is necessary to fully understand these nanoparticles’ underlying biological mechanisms.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.