MIL-125@ZIF-8 based solid phase microextraction coating for sensitive determination of organophosphate esters in aqueous environments

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Xingru Hu, Jiahui Hou, Long Pang, Zhigao Feng, Junhao Liu, Haiyang Feng, Ying Kong, Chao Liu
{"title":"MIL-125@ZIF-8 based solid phase microextraction coating for sensitive determination of organophosphate esters in aqueous environments","authors":"Xingru Hu,&nbsp;Jiahui Hou,&nbsp;Long Pang,&nbsp;Zhigao Feng,&nbsp;Junhao Liu,&nbsp;Haiyang Feng,&nbsp;Ying Kong,&nbsp;Chao Liu","doi":"10.1007/s00604-025-07127-8","DOIUrl":null,"url":null,"abstract":"<div><p>A novel MOF-on-MOF heterostructure (MIL-125@ZIF-8) was synthesized and utilized as a coating material for solid-phase microextraction (SPME), which was subsequently coupled with gas chromatography (GC) for the sensitive determination of organophosphate esters (OPEs) in water samples. Compared to commercial fiber, the MIL-125@ZIF-8 coated fiber (MIL-125@ZIF-8-F) demonstrated superior extraction performance for medium-polar or non-polar compounds due to multiple interactions such as hydrophobic interaction, π-π stacking, and hydrogen bonding. The synergistic effect of MIL-125 and ZIF-8 endowed the MIL-125@ZIF-8-F with high efficiency and excellent stability under extreme conditions. Specifically, the developed MIL-125@ZIF-8-F could withstand 80 conditioning cycles without significant loss of extraction capacity. Moreover, the established method exhibited a wide linear range (10–1000 μg L<sup>−1</sup>), low detection limits (0.03–0.20 μg L<sup>−1</sup>), and excellent reproducibility under optimized condition. Finally, this proposed method provided a promising approach for the efficient enrichment of trace OPEs in actual environmental water samples.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07127-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel MOF-on-MOF heterostructure (MIL-125@ZIF-8) was synthesized and utilized as a coating material for solid-phase microextraction (SPME), which was subsequently coupled with gas chromatography (GC) for the sensitive determination of organophosphate esters (OPEs) in water samples. Compared to commercial fiber, the MIL-125@ZIF-8 coated fiber (MIL-125@ZIF-8-F) demonstrated superior extraction performance for medium-polar or non-polar compounds due to multiple interactions such as hydrophobic interaction, π-π stacking, and hydrogen bonding. The synergistic effect of MIL-125 and ZIF-8 endowed the MIL-125@ZIF-8-F with high efficiency and excellent stability under extreme conditions. Specifically, the developed MIL-125@ZIF-8-F could withstand 80 conditioning cycles without significant loss of extraction capacity. Moreover, the established method exhibited a wide linear range (10–1000 μg L−1), low detection limits (0.03–0.20 μg L−1), and excellent reproducibility under optimized condition. Finally, this proposed method provided a promising approach for the efficient enrichment of trace OPEs in actual environmental water samples.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信