An experimental and computational investigation of Thulium doped TiO2 as n-type material for potential application in bulk heterojunction organic solar cells

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dieketseng Tsotetsi, David O. Idisi, Nicholas Rono, Edson L. Meyer, Evans M. Benecha, Pontsho Mbule, Mokhotjwa Dhlamini
{"title":"An experimental and computational investigation of Thulium doped TiO2 as n-type material for potential application in bulk heterojunction organic solar cells","authors":"Dieketseng Tsotetsi,&nbsp;David O. Idisi,&nbsp;Nicholas Rono,&nbsp;Edson L. Meyer,&nbsp;Evans M. Benecha,&nbsp;Pontsho Mbule,&nbsp;Mokhotjwa Dhlamini","doi":"10.1007/s40243-025-00304-y","DOIUrl":null,"url":null,"abstract":"<div><p>Solar energy harvesting and conversion has attracted a lot of scientific interest because solar energy is believed to be clean and sustainable. In this study, we report the synthesis of porous TiO<sub>2</sub> by sol-gel method and later doped with Thulium rare earth ions (Tm<sup>3+</sup>) for potential application in organic solar cells as electron transport layers (ETL). Additionally, density functional theory (DFT) calculation was performed with CASTEP computational suite to explore further the optoelectronic and charge transfer mechanisms in the Tm(III)-doped TiO<sub>2</sub> nanomaterials. Thereafter, the experimental material’s band gap values were extracted and used in the numerical simulation of the designed organic solar cell with a general configuration of FTO/TiO<sub>2</sub>/PBDB-T/ITIC/Cu<sub>2</sub>O/Ag, via SCAPS-1D numerical simulator. The experimental results showed a steady reduction in the band gap of TiO<sub>2</sub> with increased Tm<sup>3+</sup> doping. The electrical conductivity properties showed an enhanced feature when TiO<sub>2</sub> was doped with Tm<sup>3+</sup> nanoparticles. The calculated band gap from the density functional theory study shows a similar decreasing band gap trend with that of the experimental data, suggesting the transport properties from DFT are sufficient to describe the experimental data. The electronic transfer behaviour is analogous to metal-metal and metal-oxides transport features, which can be attributed to Ti – Tm and Tm – O – Ti hybridizations, as indicated in the orbital state alignment. The best performing modelled device with Tm(III)-doped TiO<sub>2</sub> (1.0 mol%) as ETL attained a PCE of 21.83%, V<sub>oc</sub> of 1.54 V, J<sub>sc</sub> of 31.87 mA cm<sup>− 2</sup> and FF of 44.44% which was attributed to better charge transfer characteristics and effective band alignment between the ETL and absorber, thus, better efficiency. The study proposes that Tm(III)-doped TiO<sub>2</sub> can act as a suitable n-type material that can propel the realisation of high-performance OSCs for commercialization in the future.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00304-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00304-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar energy harvesting and conversion has attracted a lot of scientific interest because solar energy is believed to be clean and sustainable. In this study, we report the synthesis of porous TiO2 by sol-gel method and later doped with Thulium rare earth ions (Tm3+) for potential application in organic solar cells as electron transport layers (ETL). Additionally, density functional theory (DFT) calculation was performed with CASTEP computational suite to explore further the optoelectronic and charge transfer mechanisms in the Tm(III)-doped TiO2 nanomaterials. Thereafter, the experimental material’s band gap values were extracted and used in the numerical simulation of the designed organic solar cell with a general configuration of FTO/TiO2/PBDB-T/ITIC/Cu2O/Ag, via SCAPS-1D numerical simulator. The experimental results showed a steady reduction in the band gap of TiO2 with increased Tm3+ doping. The electrical conductivity properties showed an enhanced feature when TiO2 was doped with Tm3+ nanoparticles. The calculated band gap from the density functional theory study shows a similar decreasing band gap trend with that of the experimental data, suggesting the transport properties from DFT are sufficient to describe the experimental data. The electronic transfer behaviour is analogous to metal-metal and metal-oxides transport features, which can be attributed to Ti – Tm and Tm – O – Ti hybridizations, as indicated in the orbital state alignment. The best performing modelled device with Tm(III)-doped TiO2 (1.0 mol%) as ETL attained a PCE of 21.83%, Voc of 1.54 V, Jsc of 31.87 mA cm− 2 and FF of 44.44% which was attributed to better charge transfer characteristics and effective band alignment between the ETL and absorber, thus, better efficiency. The study proposes that Tm(III)-doped TiO2 can act as a suitable n-type material that can propel the realisation of high-performance OSCs for commercialization in the future.

掺铥TiO2作为n型材料在体异质结有机太阳能电池中应用的实验和计算研究
由于太阳能被认为是清洁和可持续的,太阳能的收集和转换已经引起了很多科学界的兴趣。在这项研究中,我们报道了通过溶胶-凝胶法合成多孔TiO2,然后掺杂铥稀土离子(Tm3+),用于有机太阳能电池的电子传输层(ETL)。此外,利用CASTEP计算套件进行密度泛函理论(DFT)计算,进一步探索Tm(III)掺杂TiO2纳米材料的光电和电荷转移机制。然后,提取实验材料的带隙值,并利用SCAPS-1D数值模拟器对设计的FTO/TiO2/PBDB-T/ITIC/Cu2O/Ag一般构型的有机太阳能电池进行数值模拟。实验结果表明,随着Tm3+掺杂量的增加,TiO2的带隙逐渐减小。在TiO2中掺杂Tm3+纳米粒子后,TiO2的电导率有所提高。密度泛函理论计算的带隙与实验数据的带隙减小趋势相似,表明DFT的输运性质足以描述实验数据。电子转移行为类似于金属-金属和金属-氧化物的输运特征,这可以归因于Ti - Tm和Tm - O - Ti杂化,如轨道态排列所示。以Tm(III)掺杂TiO2 (1.0 mol%)作为ETL的模型器件性能最好,PCE为21.83%,Voc为1.54 V, Jsc为31.87 mA cm - 2, FF为44.44%,这是由于ETL与吸收剂之间具有更好的电荷转移特性和有效的波段定向,因此效率更高。该研究提出,Tm(III)掺杂TiO2可以作为一种合适的n型材料,可以推动未来实现高性能OSCs的商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信