{"title":"Multiasynchronous Extended Dissipative Sliding Mode Control of LC Circuits in Grid-Connected System Under Actuator Attacks","authors":"Junyi Wang;Ying Zheng;Jinliang Ding;Xiangpeng Xie;Wenjun Zhang","doi":"10.1109/TCSI.2024.3517703","DOIUrl":null,"url":null,"abstract":"This article investigates the event-triggered multiasynchronous dissipative sliding mode control problem for the gird-connected systems, where the coupled Inductance-Capacitance (LC) oscillators in electrical networks are subject to actuator attacks and external disturbances. To reduce the communication burden, the dynamic event-triggered mechanisms (DETMs) are introduced along with the switching mechanism for multiple topologies. Specifically, the topology switching process is further viewed as a general uncertain semi-Markov (GUSM) jumping process. This jumping process along with the DETM is thus represented by hidden Markov model (HMM). Then the distributed integral-type sliding mode controller is constructed on the top of the HMM. Sufficient conditions for the desired performance of the closed-loop synchronization error system are derived by constructing the mode-dependent Lyapunov-Krasovskii functional (LKF) with extended dissipativity analysis. The numerical simulation of LC oscillators in the single-phase photovoltagic grid interconnection process is conducted to validate the proposed method.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 4","pages":"1609-1620"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10812037/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates the event-triggered multiasynchronous dissipative sliding mode control problem for the gird-connected systems, where the coupled Inductance-Capacitance (LC) oscillators in electrical networks are subject to actuator attacks and external disturbances. To reduce the communication burden, the dynamic event-triggered mechanisms (DETMs) are introduced along with the switching mechanism for multiple topologies. Specifically, the topology switching process is further viewed as a general uncertain semi-Markov (GUSM) jumping process. This jumping process along with the DETM is thus represented by hidden Markov model (HMM). Then the distributed integral-type sliding mode controller is constructed on the top of the HMM. Sufficient conditions for the desired performance of the closed-loop synchronization error system are derived by constructing the mode-dependent Lyapunov-Krasovskii functional (LKF) with extended dissipativity analysis. The numerical simulation of LC oscillators in the single-phase photovoltagic grid interconnection process is conducted to validate the proposed method.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.