RIVL: A Low-Cost SoC Agile Development Platform for Multiple RISC-V Processors Design and Verification

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Lida Xu;Zewen Cao;Hualong Zhao;Zhuo Peng;Yuchi Miao;Chunan Zhuang;Hongrui Ruan;Yuying Dong;Chuanbin Zeng;Bo Li;Jiajun Luo
{"title":"RIVL: A Low-Cost SoC Agile Development Platform for Multiple RISC-V Processors Design and Verification","authors":"Lida Xu;Zewen Cao;Hualong Zhao;Zhuo Peng;Yuchi Miao;Chunan Zhuang;Hongrui Ruan;Yuying Dong;Chuanbin Zeng;Bo Li;Jiajun Luo","doi":"10.1109/TCSI.2024.3509634","DOIUrl":null,"url":null,"abstract":"Current processor chip designs are mainly oriented by performance, power and area (PPA), and developed using the waterfall model. However, there are two main challenges in this development model: 1) The end-to-end iteration cycle and cost of processor chip development are too high, and cannot flexibly respond to changes in chip fragmented design specifications. 2) Processor chip verification is less agile, and there is a lack of a full-chain processor agile design platform that can be easily ported to different development environments. To tackle both issues, we propose an object-oriented hardware agile design methodology, oriented by time, cost, and complexity, and have built the RIVL platform to support the agile development process for processors. RIVL integrates a highly automated design flow for processor RTL design, Integration, Verification, and Layout design to improve processor development efficiency. We achieved tape-out verification of more than 60 RISC-V processors through agile design methods, demonstrating the use and effectiveness of RIVL. We quantify the performance of CoreGen using CoreMark and demonstrate that CoreGen achieves industry-competitive performance.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 4","pages":"1668-1678"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10790861/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Current processor chip designs are mainly oriented by performance, power and area (PPA), and developed using the waterfall model. However, there are two main challenges in this development model: 1) The end-to-end iteration cycle and cost of processor chip development are too high, and cannot flexibly respond to changes in chip fragmented design specifications. 2) Processor chip verification is less agile, and there is a lack of a full-chain processor agile design platform that can be easily ported to different development environments. To tackle both issues, we propose an object-oriented hardware agile design methodology, oriented by time, cost, and complexity, and have built the RIVL platform to support the agile development process for processors. RIVL integrates a highly automated design flow for processor RTL design, Integration, Verification, and Layout design to improve processor development efficiency. We achieved tape-out verification of more than 60 RISC-V processors through agile design methods, demonstrating the use and effectiveness of RIVL. We quantify the performance of CoreGen using CoreMark and demonstrate that CoreGen achieves industry-competitive performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信