{"title":"Statistical Post-FEC BER Estimation of High-Speed Serial Links Subject to DFE Error Propagation","authors":"Zhuo Chen;Kezhu Song;Chengyang Zhu;Dongwei Zou;Yuecheng Xu","doi":"10.1109/TCSI.2024.3491191","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel and efficient model for the estimation of post-FEC BER for high-speed serial links using FEC codes such as RS (544, 514) in the presence of DFE error propagation. The model employs the Markov model for DFE error propagation and incorporates concepts from the Gilbert-Elliott model. Using various optimization techniques, including Markov state aggregation, burst tables, and adaptive neglect of rare cases, it achieves a computation time that is only 1.658% of that required by previous work for the post-FEC BER computation with RS (544, 514) FEC code and a 2-tap DFE. Furthermore, analyses demonstrate that its computation time increases less rapidly with respect to the number of DFE taps compared to previous works, indicating its better applicability for systems with more DFE taps or larger state spaces. Data measured from an FPGA-based behavior simulator proved that the model can accurately estimate post-FEC BER.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 4","pages":"1888-1901"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10765078/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel and efficient model for the estimation of post-FEC BER for high-speed serial links using FEC codes such as RS (544, 514) in the presence of DFE error propagation. The model employs the Markov model for DFE error propagation and incorporates concepts from the Gilbert-Elliott model. Using various optimization techniques, including Markov state aggregation, burst tables, and adaptive neglect of rare cases, it achieves a computation time that is only 1.658% of that required by previous work for the post-FEC BER computation with RS (544, 514) FEC code and a 2-tap DFE. Furthermore, analyses demonstrate that its computation time increases less rapidly with respect to the number of DFE taps compared to previous works, indicating its better applicability for systems with more DFE taps or larger state spaces. Data measured from an FPGA-based behavior simulator proved that the model can accurately estimate post-FEC BER.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.