Structure-Reconfigurable Wide Gain Series Resonant Converter for On-Board Charger

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Deyu Wang;Xianpeng Chen;Qinglin Zhao;Zbigniew Kaczmarczyk
{"title":"Structure-Reconfigurable Wide Gain Series Resonant Converter for On-Board Charger","authors":"Deyu Wang;Xianpeng Chen;Qinglin Zhao;Zbigniew Kaczmarczyk","doi":"10.1109/TCSI.2024.3505271","DOIUrl":null,"url":null,"abstract":"In this article, a structure-reconfigurable series resonant DC-DC converter is proposed for a wide gain on-board charger application. The proposed converter consists of a dual-bridge structure on the primary side which can realize 0.5 to 1 voltage gain by using a reconfigurable half/full bridge structure, and a hybrid rectifier on the secondary side which can realize 1 to infinite voltage gain by replacing two diodes with active switches. Moreover, the proposed converter employs a control scheme based on fixed frequency PWM, with the operating frequency being identical to the series resonant frequency. Accordingly, magnetizing inductance of the transformer is independent of the converter gain characteristics, which simplifies the consideration of the resonance parameters design. In addition, soft switching can be realized during the entire charging process, and high efficiency can be achieved. To avoid the voltage spike and current impact in the transition between two operation modes, a unified switching modulation strategy is applied to achieve a smooth transition and improve the control stability. Finally, a 2.5 kW prototype with an output voltage range of 200V - 500 V is established and tested to verify the effectiveness and feasibility of the proposed converter.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 4","pages":"1951-1961"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10931150/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a structure-reconfigurable series resonant DC-DC converter is proposed for a wide gain on-board charger application. The proposed converter consists of a dual-bridge structure on the primary side which can realize 0.5 to 1 voltage gain by using a reconfigurable half/full bridge structure, and a hybrid rectifier on the secondary side which can realize 1 to infinite voltage gain by replacing two diodes with active switches. Moreover, the proposed converter employs a control scheme based on fixed frequency PWM, with the operating frequency being identical to the series resonant frequency. Accordingly, magnetizing inductance of the transformer is independent of the converter gain characteristics, which simplifies the consideration of the resonance parameters design. In addition, soft switching can be realized during the entire charging process, and high efficiency can be achieved. To avoid the voltage spike and current impact in the transition between two operation modes, a unified switching modulation strategy is applied to achieve a smooth transition and improve the control stability. Finally, a 2.5 kW prototype with an output voltage range of 200V - 500 V is established and tested to verify the effectiveness and feasibility of the proposed converter.
用于车载充电器的结构可重构宽增益串联谐振变换器
本文提出了一种结构可重构的串联谐振DC-DC变换器,用于宽增益车载充电器。该变换器在一次侧采用可重构的半桥/全桥结构,实现0.5 ~ 1的电压增益;在二次侧采用混合整流器,用主动开关代替两个二极管,实现1 ~无限的电压增益。此外,该变换器采用了基于定频PWM的控制方案,工作频率与串联谐振频率相同。因此,变压器的磁化电感与变换器增益特性无关,简化了谐振参数设计的考虑。此外,在整个充电过程中可以实现软开关,实现高效率。为了避免在两种工作模式之间转换时产生电压尖峰和电流冲击,采用统一的切换调制策略实现平稳过渡,提高控制稳定性。最后,建立了输出电压范围为200V ~ 500v的2.5 kW样机并进行了测试,验证了所提出变换器的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信