Ruobin Gao;Maohan Liang;Heng Dong;Xuewen Luo;Ponnuthurai N. Suganthan
{"title":"Underwater Acoustic Signal Denoising Algorithms: A Survey of the State of the Art","authors":"Ruobin Gao;Maohan Liang;Heng Dong;Xuewen Luo;Ponnuthurai N. Suganthan","doi":"10.1109/TIM.2025.3551006","DOIUrl":null,"url":null,"abstract":"Underwater acoustic signal (UAS) denoising is crucial for enhancing the reliability of underwater communication and monitoring systems by mitigating the effects of noise and improving signal clarity. The complex and dynamic nature of underwater environments presents unique challenges that make effective denoising essential for accurate data interpretation and system performance. This article comprehensively reviews recent advances in UAS denoising, focusing on its critical role in improving these systems. The review begins by addressing the fundamental challenges in UAS processing, such as signal attenuation, noise variability, and environmental impacts. It then categorizes and analyzes various denoising algorithms, including conventional, decomposition-based, and learning-based approaches, discussing their applications, strengths, and limitations. Additionally, the article reviews evaluation metrics and experimental datasets used in the field. The conclusion highlights key open questions and suggests future research directions, emphasizing the development of more adaptive and robust denoising techniques for dynamic underwater environments.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-18"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10935817/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Underwater acoustic signal (UAS) denoising is crucial for enhancing the reliability of underwater communication and monitoring systems by mitigating the effects of noise and improving signal clarity. The complex and dynamic nature of underwater environments presents unique challenges that make effective denoising essential for accurate data interpretation and system performance. This article comprehensively reviews recent advances in UAS denoising, focusing on its critical role in improving these systems. The review begins by addressing the fundamental challenges in UAS processing, such as signal attenuation, noise variability, and environmental impacts. It then categorizes and analyzes various denoising algorithms, including conventional, decomposition-based, and learning-based approaches, discussing their applications, strengths, and limitations. Additionally, the article reviews evaluation metrics and experimental datasets used in the field. The conclusion highlights key open questions and suggests future research directions, emphasizing the development of more adaptive and robust denoising techniques for dynamic underwater environments.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.