{"title":"Dual-Branch Network for No-Reference Super-Resolution Image Quality Assessment","authors":"Tong Tang;Fan Yang;Xinyu Lin;Weisheng Li","doi":"10.1109/LSP.2025.3553432","DOIUrl":null,"url":null,"abstract":"No-reference super-resolution image quality assessment (SR-IQA) has become an critical technique for optimizing SR algorithms, the key challenge is how to comprehensively learn visual related features of SR image. Existing methods ignore the context information and feature correlation. To tackle this problem, this letter proposes a dual-branch network for no-reference super-resolution image quality assessment (DBSRNet). First, dual-branch feature extraction module is designed, where residual network and receptive field block net are combined to learn multi-scale local features, stacked vision transformer blocks are utilized to learn global features. Then, correlations between dual-branch features are learned and fused based on self-attention mechanism structure, final predicted score is obtained by adaptive feature pooling strategy. Finally, experimental results show that DBSRNet significantly outperforms State-of-the-Art methods in terms of prediction accuracy on all SR-IQA datasets.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1366-1370"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10935628/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
No-reference super-resolution image quality assessment (SR-IQA) has become an critical technique for optimizing SR algorithms, the key challenge is how to comprehensively learn visual related features of SR image. Existing methods ignore the context information and feature correlation. To tackle this problem, this letter proposes a dual-branch network for no-reference super-resolution image quality assessment (DBSRNet). First, dual-branch feature extraction module is designed, where residual network and receptive field block net are combined to learn multi-scale local features, stacked vision transformer blocks are utilized to learn global features. Then, correlations between dual-branch features are learned and fused based on self-attention mechanism structure, final predicted score is obtained by adaptive feature pooling strategy. Finally, experimental results show that DBSRNet significantly outperforms State-of-the-Art methods in terms of prediction accuracy on all SR-IQA datasets.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.