Optimizing layer configuration and material selection to enhance CIGS solar cell performance through computational simulation

Sawrab Sikder , Md. Kamrul Hasan , Hayati Mamur , Mohammad Ruhul Amin Bhuiyan
{"title":"Optimizing layer configuration and material selection to enhance CIGS solar cell performance through computational simulation","authors":"Sawrab Sikder ,&nbsp;Md. Kamrul Hasan ,&nbsp;Hayati Mamur ,&nbsp;Mohammad Ruhul Amin Bhuiyan","doi":"10.1016/j.hybadv.2025.100460","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for renewable energy has driven research into advanced photovoltaic (PV) technologies for solar cells (SCs). Copper indium gallium selenide (CIGS) SCs present numerous benefits, such as high absorption efficiency, compatibility with flexible substrates, and potential for cost-effective production. This study utilizes SCAPS-1D software to optimize a CIGS-based SC structure featuring a novel Al/ZnO/ZnMnO/CIGS/Cu<sub>2</sub>O/Ni configuration. We systematically optimized key parameters, including material selection, layer thickness, doping concentrations, series and shunt resistances, and temperature, to enhance device performance. Our results demonstrate that an optimal configuration with a 3000 nm thick CIGS absorber layer, a 50 nm thick zinc oxide (ZnO) window layer, zinc manganese oxide (ZnMnO) buffer layers, and a 10 nm thick cuprous oxide (Cu<sub>2</sub>O) electron-reflecting hole transport layer (ER-HTL) achieves an impressive open-circuit voltage (V<sub>OC</sub>) of 1.0112 V, a short-circuit current density (J<sub>SC</sub>) of 38.80 mA/cm<sup>2</sup>, a fill factor (FF) of 81.13 %, and a power conversion efficiency (PCE) of 31.84 % under AM1.5G solar spectra. By minimizing series resistance and maximizing shunt resistance, we reduced resistive losses, voltage drop, and current leakage, thus enhancing overall device performance. Additionally, the device exhibited a remarkable quantum efficiency (QE) of approximately 95.54 % within the visible wavelength range. These findings contribute to a deeper understanding of CIGS solar cells and guide future research aimed at optimizing materials and designs to improve efficiency and stability, ultimately advancing affordable solar energy solutions.</div></div>","PeriodicalId":100614,"journal":{"name":"Hybrid Advances","volume":"10 ","pages":"Article 100460"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hybrid Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773207X25000843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for renewable energy has driven research into advanced photovoltaic (PV) technologies for solar cells (SCs). Copper indium gallium selenide (CIGS) SCs present numerous benefits, such as high absorption efficiency, compatibility with flexible substrates, and potential for cost-effective production. This study utilizes SCAPS-1D software to optimize a CIGS-based SC structure featuring a novel Al/ZnO/ZnMnO/CIGS/Cu2O/Ni configuration. We systematically optimized key parameters, including material selection, layer thickness, doping concentrations, series and shunt resistances, and temperature, to enhance device performance. Our results demonstrate that an optimal configuration with a 3000 nm thick CIGS absorber layer, a 50 nm thick zinc oxide (ZnO) window layer, zinc manganese oxide (ZnMnO) buffer layers, and a 10 nm thick cuprous oxide (Cu2O) electron-reflecting hole transport layer (ER-HTL) achieves an impressive open-circuit voltage (VOC) of 1.0112 V, a short-circuit current density (JSC) of 38.80 mA/cm2, a fill factor (FF) of 81.13 %, and a power conversion efficiency (PCE) of 31.84 % under AM1.5G solar spectra. By minimizing series resistance and maximizing shunt resistance, we reduced resistive losses, voltage drop, and current leakage, thus enhancing overall device performance. Additionally, the device exhibited a remarkable quantum efficiency (QE) of approximately 95.54 % within the visible wavelength range. These findings contribute to a deeper understanding of CIGS solar cells and guide future research aimed at optimizing materials and designs to improve efficiency and stability, ultimately advancing affordable solar energy solutions.
通过计算模拟优化CIGS太阳能电池的层构型和材料选择
对可再生能源日益增长的需求推动了太阳能电池先进光伏(PV)技术的研究。铜铟镓硒(CIGS) SCs具有许多优点,如高吸收效率,与柔性衬底兼容,以及具有成本效益的生产潜力。本研究利用SCAPS-1D软件优化了基于CIGS的SC结构,该结构具有新颖的Al/ZnO/ZnMnO/CIGS/Cu2O/Ni结构。我们系统地优化了关键参数,包括材料选择,层厚度,掺杂浓度,串联和并联电阻以及温度,以提高器件性能。结果表明,在3000 nm厚的CIGS吸收层、50 nm厚的氧化锌(ZnO)窗口层、锌锰氧化物(ZnMnO)缓冲层和10 nm厚的氧化亚铜(Cu2O)电子反射空穴传输层(ER-HTL)的最优配置下,开路电压(VOC)为1.0112 V,短路电流密度(JSC)为38.80 mA/cm2,填充系数(FF)为81.13%。在AM1.5G太阳光谱下,功率转换效率(PCE)为31.84%。通过最小化串联电阻和最大化分流电阻,我们减少了电阻损耗、压降和漏电流,从而提高了器件的整体性能。此外,该器件在可见波长范围内具有显著的量子效率(QE),约为95.54%。这些发现有助于更深入地了解CIGS太阳能电池,并指导未来的研究,旨在优化材料和设计,以提高效率和稳定性,最终推进经济实惠的太阳能解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信