Composition and layered co-continuous structure co-regulate shape memory properties

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Feng Yang , Haofan He , Jiye Jia , Ping Wu , Pei Feng , Cijun Shuai
{"title":"Composition and layered co-continuous structure co-regulate shape memory properties","authors":"Feng Yang ,&nbsp;Haofan He ,&nbsp;Jiye Jia ,&nbsp;Ping Wu ,&nbsp;Pei Feng ,&nbsp;Cijun Shuai","doi":"10.1016/j.ijmecsci.2025.110187","DOIUrl":null,"url":null,"abstract":"<div><div>4D printed shape memory implant is highly promising for the realization of minimally invasive, while challenged by the poor shape memory effect (SME) of commonly used biodegradable shape memory polymer (SMP) such as poly(L-lactic acid) (PLLA) and thermoplastic polyurethane (TPU). Herein, the shape memory bone scaffold was fabricated by laser powder bed fusion (LPBF) with layered co-continuous structures containing PLLA and TPU. And SME of the scaffold was ameliorated by regulating the material composition and constructing a special layered co-continuous structure for the first time. The layered co-continuous structure could avoid the impact of morphology on SME due to the immiscibility between PLLA and TPU, thus broadening the window of tuning the SME. As the ratio of PLLA and TPU decreased gradually, the shape fixity ratio (R<sub>f</sub>) decreased and the shape recovery ratio (R<sub>r</sub>) increased. This was attributed to the combination of changes in the ratio of \"switching segment and netpoint\" and the reverse stiffness effect between PLLA and TPU. Besides, due to the efficient stress transfer in the layered co-continuous structure, the R<sub>f</sub> and R<sub>r</sub> would be considerably changed only when the content threshold of the switching segment or netpoint was reached. A good SME was obtained when the ratio of TPU to PLLA was 2:1, with R<sub>f</sub> of 96.5 % and R<sub>r</sub> of 96.71 % compared to the pure PLLA. Additionally, the scaffold exhibited sufficient compressive strength and benign cytocompatibility. This study proposed a new and simple but effective strategy to prepare bone scaffold with excellent shape memory properties.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"291 ","pages":"Article 110187"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325002735","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

4D printed shape memory implant is highly promising for the realization of minimally invasive, while challenged by the poor shape memory effect (SME) of commonly used biodegradable shape memory polymer (SMP) such as poly(L-lactic acid) (PLLA) and thermoplastic polyurethane (TPU). Herein, the shape memory bone scaffold was fabricated by laser powder bed fusion (LPBF) with layered co-continuous structures containing PLLA and TPU. And SME of the scaffold was ameliorated by regulating the material composition and constructing a special layered co-continuous structure for the first time. The layered co-continuous structure could avoid the impact of morphology on SME due to the immiscibility between PLLA and TPU, thus broadening the window of tuning the SME. As the ratio of PLLA and TPU decreased gradually, the shape fixity ratio (Rf) decreased and the shape recovery ratio (Rr) increased. This was attributed to the combination of changes in the ratio of "switching segment and netpoint" and the reverse stiffness effect between PLLA and TPU. Besides, due to the efficient stress transfer in the layered co-continuous structure, the Rf and Rr would be considerably changed only when the content threshold of the switching segment or netpoint was reached. A good SME was obtained when the ratio of TPU to PLLA was 2:1, with Rf of 96.5 % and Rr of 96.71 % compared to the pure PLLA. Additionally, the scaffold exhibited sufficient compressive strength and benign cytocompatibility. This study proposed a new and simple but effective strategy to prepare bone scaffold with excellent shape memory properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信