Three-in-one polyimide-based blended membrane for Upgrading helium separation performance and physical aging resistance

Bingbing Gao , Yiran Peng , Ming Wu , Hua Ma , Jianchao Sun , Peng Zhang , Xingzhong Cao , Like Ouyang , Xiaobin Fu , Chunfang Zhang , Yunxiang Bai , Lijun Liang , Yang Liu , Liangliang Dong
{"title":"Three-in-one polyimide-based blended membrane for Upgrading helium separation performance and physical aging resistance","authors":"Bingbing Gao ,&nbsp;Yiran Peng ,&nbsp;Ming Wu ,&nbsp;Hua Ma ,&nbsp;Jianchao Sun ,&nbsp;Peng Zhang ,&nbsp;Xingzhong Cao ,&nbsp;Like Ouyang ,&nbsp;Xiaobin Fu ,&nbsp;Chunfang Zhang ,&nbsp;Yunxiang Bai ,&nbsp;Lijun Liang ,&nbsp;Yang Liu ,&nbsp;Liangliang Dong","doi":"10.1016/j.advmem.2025.100139","DOIUrl":null,"url":null,"abstract":"<div><div>Polyimide membranes have attracted considerable attention for gas separation applications; however, achieving efficient helium (He) separation remains a significant challenge due to the low fractional free volume (<em>FFV</em>) and poorly controlled pore size distribution. Here, we report a novel three-in-one polyimide-based blended membrane constructed from a polymer (6FDA-TFMB) and alkynyl-based polyimide (EBPA-TB) matrix via thermal crosslinking. By carefully designing membrane synthesis and structure, the resulting membrane achieves the “1 ​+ ​1&gt;2” effect: (i) high He selectivity derived from reinforced interphase adhesion and size-sieving ability due to the hydrogen bonding and similar structure between 6FDA-TFMB and EBPA-TB; (ii) high He permeability derived from the rigid cross-linked network distorting the EBPA-TB chain packing and generating additional free volume; (iii) high anti-aging performance derived from the thermal crosslinking preventing microstructural rearrangements. The optimal membrane an unprecedented combination of high He permeability (51.24 Barrer), excellent He/N<sub>2</sub> selectivity (146.40) and remarkable aging resistance (less than 3.97 % of permeability decrease over 50 days), outperforming the performance of state-of-the-art polyimide-based blended membranes for He purification. This three-in-one blended membrane construction strategy provides a general toolbox for the development of next-generation, high-performance blended membranes with desirable performance for diverse industrial applications.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polyimide membranes have attracted considerable attention for gas separation applications; however, achieving efficient helium (He) separation remains a significant challenge due to the low fractional free volume (FFV) and poorly controlled pore size distribution. Here, we report a novel three-in-one polyimide-based blended membrane constructed from a polymer (6FDA-TFMB) and alkynyl-based polyimide (EBPA-TB) matrix via thermal crosslinking. By carefully designing membrane synthesis and structure, the resulting membrane achieves the “1 ​+ ​1>2” effect: (i) high He selectivity derived from reinforced interphase adhesion and size-sieving ability due to the hydrogen bonding and similar structure between 6FDA-TFMB and EBPA-TB; (ii) high He permeability derived from the rigid cross-linked network distorting the EBPA-TB chain packing and generating additional free volume; (iii) high anti-aging performance derived from the thermal crosslinking preventing microstructural rearrangements. The optimal membrane an unprecedented combination of high He permeability (51.24 Barrer), excellent He/N2 selectivity (146.40) and remarkable aging resistance (less than 3.97 % of permeability decrease over 50 days), outperforming the performance of state-of-the-art polyimide-based blended membranes for He purification. This three-in-one blended membrane construction strategy provides a general toolbox for the development of next-generation, high-performance blended membranes with desirable performance for diverse industrial applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信