Improving porosity distribution and mechanical performance of multilayer sandwich composites using a new strategy of gradient curing cycles during internal thermal expansion molding process

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Yunfei Peng, Maojun Li, Xujing Yang, Bingjie Sun, Shilong Lv
{"title":"Improving porosity distribution and mechanical performance of multilayer sandwich composites using a new strategy of gradient curing cycles during internal thermal expansion molding process","authors":"Yunfei Peng,&nbsp;Maojun Li,&nbsp;Xujing Yang,&nbsp;Bingjie Sun,&nbsp;Shilong Lv","doi":"10.1016/j.tws.2025.113244","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a novel gradient curing cycle strategy for optimizing resin impregnation flow in the internal thermal expansion molding process, aimed at significantly improving porosity distribution and enhancing mechanical performance. The proposed strategy meticulously aligns the foaming characteristics of thermal expansion foam with the curing behavior of prepregs, effectively surpassing conventional curing temperature limitations. By allowing a controlled temperature hold above the resin gelation point, this approach leverages continuous and stable foam expansion to achieve superior results. A key innovation of this work lies in demonstrating the capability of the gradient curing cycle to produce CFRP with ultra-low porosity levels as low as 0.1 % sandwich composite structures. This advancement enables a systematic investigation into the spatial evolution of inter-bundle voids and elucidates the underlying mechanism for void suppression. Furthermore, the strategy enhances the bending fracture toughness and shear strength of CFRP by 22.6 % and 6.5 %, respectively, marking a significant leap in performance compared to traditional internal thermal expansion molding methods. The findings of this work establish a solid foundation for extending the application of complex components fabricated via the internal thermal expansion molding process to more demanding operational environments and increasingly complex working conditions.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"212 ","pages":"Article 113244"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125003386","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a novel gradient curing cycle strategy for optimizing resin impregnation flow in the internal thermal expansion molding process, aimed at significantly improving porosity distribution and enhancing mechanical performance. The proposed strategy meticulously aligns the foaming characteristics of thermal expansion foam with the curing behavior of prepregs, effectively surpassing conventional curing temperature limitations. By allowing a controlled temperature hold above the resin gelation point, this approach leverages continuous and stable foam expansion to achieve superior results. A key innovation of this work lies in demonstrating the capability of the gradient curing cycle to produce CFRP with ultra-low porosity levels as low as 0.1 % sandwich composite structures. This advancement enables a systematic investigation into the spatial evolution of inter-bundle voids and elucidates the underlying mechanism for void suppression. Furthermore, the strategy enhances the bending fracture toughness and shear strength of CFRP by 22.6 % and 6.5 %, respectively, marking a significant leap in performance compared to traditional internal thermal expansion molding methods. The findings of this work establish a solid foundation for extending the application of complex components fabricated via the internal thermal expansion molding process to more demanding operational environments and increasingly complex working conditions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信