Yizhe Yang , Zhixun Wen , Haiqing Pei , Lijian Shi , Jingbo Xiao , Zhufeng Yue
{"title":"Effect of creep behavior on the Ni-based single crystal blade structure under abrupt loading conditions","authors":"Yizhe Yang , Zhixun Wen , Haiqing Pei , Lijian Shi , Jingbo Xiao , Zhufeng Yue","doi":"10.1016/j.tws.2025.113221","DOIUrl":null,"url":null,"abstract":"<div><div>The flight mission of aeroengines exhibits dynamic features during operation. It is crucial to consider the effect of abrupt loading conditions when evaluating the creep behavior of turbine blades. In this paper, the effect of variable temperature and stress on creep rupture behavior of Ni-based single crystal (SX) turbine blade simulator specimen was systematically studied by experimental and finite element analysis methods. The experimental results indicated that creep strain jump could be observed with increasing temperature and stress, accompanied by the new primary and secondary stages. The creep fracture mechanism and microstructure evolution were revealed by the macro and micro analysis of the specimen after failure. Based on the above research, the creep damage model considering the material degradation and voids damage was used to calculate and analyze the creep behavior of the blade-like specimen. The finite element simulation results are nearly consistent with the experimental fracture path of the specimen.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"212 ","pages":"Article 113221"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125003155","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The flight mission of aeroengines exhibits dynamic features during operation. It is crucial to consider the effect of abrupt loading conditions when evaluating the creep behavior of turbine blades. In this paper, the effect of variable temperature and stress on creep rupture behavior of Ni-based single crystal (SX) turbine blade simulator specimen was systematically studied by experimental and finite element analysis methods. The experimental results indicated that creep strain jump could be observed with increasing temperature and stress, accompanied by the new primary and secondary stages. The creep fracture mechanism and microstructure evolution were revealed by the macro and micro analysis of the specimen after failure. Based on the above research, the creep damage model considering the material degradation and voids damage was used to calculate and analyze the creep behavior of the blade-like specimen. The finite element simulation results are nearly consistent with the experimental fracture path of the specimen.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.