Emma Balog , Gyula Jenei , Anikó Magyariné Berkó , Bálint Lőrinczi , István Szatmári , László Vécsei , József Toldi , Zsolt Kis
{"title":"Age-dependent changes in NMDA-induced excitotoxicity and neuromodulatory effects of kynurenic acid and its analogue in mouse brain slices","authors":"Emma Balog , Gyula Jenei , Anikó Magyariné Berkó , Bálint Lőrinczi , István Szatmári , László Vécsei , József Toldi , Zsolt Kis","doi":"10.1016/j.neulet.2025.138220","DOIUrl":null,"url":null,"abstract":"<div><div>Kynurenic acid (KYNA) is one of the main neuroprotective substances of the kynurenine pathway. KYNA plays an important role in various neurodegenerative and psychiatric diseases. Although KYNA has been shown to have neuroprotective effects, it cannot be used as a peripherally administered drug due to its poor ability to cross the blood–brain barrier. To address this limitation, chemically modified KYNA analogues are being developed: SZR72 is one such analogue and has been shown to be protective in various animal models. Glutamate-induced excitotoxicity is a key factor in many neurodegenerative diseases. Therefore, we used the N-methyl-D-aspartate (NMDA)-induced excitotoxicity model to investigate the neuromodulatory agents.</div><div>Using acute hippocampal slices from mouse brains, we investigated the potential neuroprotective effect of KYNA and its analogue, SZR72 on NMDA-induced excitotoxicity across different age groups of mice. The degree of tissue damage was assessed using biochemical and histological methods.</div><div>In young animals (1- and 4-week-old), NMDA treatment caused no significant changes, and the cells were found to be resistant. However, in older animals (8-week-old and 1-year-old), NMDA caused significant damage in cells and tissue structure, which was reduced by KYNA and SZR72 treatment.</div><div>To our knowledge, this is the first study to compare the neuroprotective effects of KYNA and SZR72 in animals of different ages using an <em>in vitro</em> NMDA excitotoxicity model.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"854 ","pages":"Article 138220"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025001089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Kynurenic acid (KYNA) is one of the main neuroprotective substances of the kynurenine pathway. KYNA plays an important role in various neurodegenerative and psychiatric diseases. Although KYNA has been shown to have neuroprotective effects, it cannot be used as a peripherally administered drug due to its poor ability to cross the blood–brain barrier. To address this limitation, chemically modified KYNA analogues are being developed: SZR72 is one such analogue and has been shown to be protective in various animal models. Glutamate-induced excitotoxicity is a key factor in many neurodegenerative diseases. Therefore, we used the N-methyl-D-aspartate (NMDA)-induced excitotoxicity model to investigate the neuromodulatory agents.
Using acute hippocampal slices from mouse brains, we investigated the potential neuroprotective effect of KYNA and its analogue, SZR72 on NMDA-induced excitotoxicity across different age groups of mice. The degree of tissue damage was assessed using biochemical and histological methods.
In young animals (1- and 4-week-old), NMDA treatment caused no significant changes, and the cells were found to be resistant. However, in older animals (8-week-old and 1-year-old), NMDA caused significant damage in cells and tissue structure, which was reduced by KYNA and SZR72 treatment.
To our knowledge, this is the first study to compare the neuroprotective effects of KYNA and SZR72 in animals of different ages using an in vitro NMDA excitotoxicity model.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.