Hua Li , Dorthe H. Larsen , Rob E. Schouten , Diede de Jager , Xinhe Huang , Salem Agboyinu , Mengxiao Wang , Ric C.H. de Vos , Jan A.L. Van Kan , Leo F.M. Marcelis , Ernst J. Woltering
{"title":"Red, blue and far-red light affect strawberry plant development and fruit quality without changing the susceptibility to Botrytis cinerea infection","authors":"Hua Li , Dorthe H. Larsen , Rob E. Schouten , Diede de Jager , Xinhe Huang , Salem Agboyinu , Mengxiao Wang , Ric C.H. de Vos , Jan A.L. Van Kan , Leo F.M. Marcelis , Ernst J. Woltering","doi":"10.1016/j.envexpbot.2025.106133","DOIUrl":null,"url":null,"abstract":"<div><div>Light regulates plant development, fruit quality characteristics and pathogen defense through primary and secondary metabolism. We investigated the effects of light spectrum on plant development, the levels of primary and secondary metabolites and fungal susceptibility in strawberry fruit harvested in turning and red ripe stages. Strawberry plants were grown in a climate chamber under different red (R) to blue (B) light ratios with and without ∼50 μmol m<sup>–2</sup> s<sup>–1</sup> additional far-red (FR) light. A total photosynthetic photon flux density (PPFD) of ∼180 μmol m<sup>–2</sup> s<sup>–1</sup> was applied with a 16 h day length. Low R to B light ratios resulted in lower levels of sucrose but higher levels of ascorbic acid, proanthocyanidin, (<em>E</em>)-2-hexenal and (<em>Z</em>)-3-hexenol in fruit. No effects of R to B ratios on plant morphology, flowering time and fruit set were observed. Additional FR light increased plant height, accelerated flower and fruit formation; decreased levels of ascorbic acid and anthocyanins but increased levels of soluble sugar and strawberry flavor-related volatiles. Fruit susceptibility to <em>B. cinerea</em> was not affected by the light treatments.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"233 ","pages":"Article 106133"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847225000504","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Light regulates plant development, fruit quality characteristics and pathogen defense through primary and secondary metabolism. We investigated the effects of light spectrum on plant development, the levels of primary and secondary metabolites and fungal susceptibility in strawberry fruit harvested in turning and red ripe stages. Strawberry plants were grown in a climate chamber under different red (R) to blue (B) light ratios with and without ∼50 μmol m–2 s–1 additional far-red (FR) light. A total photosynthetic photon flux density (PPFD) of ∼180 μmol m–2 s–1 was applied with a 16 h day length. Low R to B light ratios resulted in lower levels of sucrose but higher levels of ascorbic acid, proanthocyanidin, (E)-2-hexenal and (Z)-3-hexenol in fruit. No effects of R to B ratios on plant morphology, flowering time and fruit set were observed. Additional FR light increased plant height, accelerated flower and fruit formation; decreased levels of ascorbic acid and anthocyanins but increased levels of soluble sugar and strawberry flavor-related volatiles. Fruit susceptibility to B. cinerea was not affected by the light treatments.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.