{"title":"A wheat NAC transcription factor, TaNAC018-7D, regulates seed dormancy and germination by binding to the GA biosynthesis gene TaGA7ox-A1","authors":"Wenlu Chen, Chenchen Wang, Qishi Zhuang, Wei Liu, Renjie Wang, Jinhao Chen, Xinyi Xu, Yanan Yan, Huihui Xu, Chuanxi Ma, Cheng Chang, Haiping Zhang","doi":"10.1016/j.envexpbot.2025.106130","DOIUrl":null,"url":null,"abstract":"<div><div>Pre-harvest sprouting (PHS) reduces grain yield and quality and poses a serious threat to global wheat production. Seed dormancy and germination are closely related to PHS resistance. However, the intricate regulatory processes governing seed dormancy and germination remain largely unknown. Here, we reported that a NAC transcription factor gene (<em>TaNAC018–7D</em>) is highly expressed in weak-dormancy wheat cultivar Jing 411 compared with a strong-dormancy landrace Hongmangchun 21 during seed germination. Germination tests revealed that <em>TaNAC018–7D</em> negatively regulates seed dormancy and positively mediates germination in transgenic lines of <em>Arabidopsis</em> and rice, and wheat mutants induced by ethyl methane sulfonate in the Jing 411 background. Subcellular localization analysis indicated that TaNAC018–7D is located in the nucleus and cytoplasm. Physiological, biochemical, and molecular experiments indicated that TaNAC018–7D interacts with the promoter of the GA biosynthesis gene <em>TaGA7ox-A1</em> and activates its expression, thereby shortening seed dormancy and promoting germination. In summary, this study provides a new target gene for improving wheat PHS resistance, and improves the understanding of the complex regulatory network of PHS resistance.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"233 ","pages":"Article 106130"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847225000474","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Pre-harvest sprouting (PHS) reduces grain yield and quality and poses a serious threat to global wheat production. Seed dormancy and germination are closely related to PHS resistance. However, the intricate regulatory processes governing seed dormancy and germination remain largely unknown. Here, we reported that a NAC transcription factor gene (TaNAC018–7D) is highly expressed in weak-dormancy wheat cultivar Jing 411 compared with a strong-dormancy landrace Hongmangchun 21 during seed germination. Germination tests revealed that TaNAC018–7D negatively regulates seed dormancy and positively mediates germination in transgenic lines of Arabidopsis and rice, and wheat mutants induced by ethyl methane sulfonate in the Jing 411 background. Subcellular localization analysis indicated that TaNAC018–7D is located in the nucleus and cytoplasm. Physiological, biochemical, and molecular experiments indicated that TaNAC018–7D interacts with the promoter of the GA biosynthesis gene TaGA7ox-A1 and activates its expression, thereby shortening seed dormancy and promoting germination. In summary, this study provides a new target gene for improving wheat PHS resistance, and improves the understanding of the complex regulatory network of PHS resistance.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.