Hydrogen embrittlement of additively manufactured metallic materials

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Vijay Shankar Sridharan , Virendra Kumar Verma , R. Lakshmi Narayan , Xu Lu , Du Siwei , Varun Chaudhary , Li Hua , Dong ZhiLi
{"title":"Hydrogen embrittlement of additively manufactured metallic materials","authors":"Vijay Shankar Sridharan ,&nbsp;Virendra Kumar Verma ,&nbsp;R. Lakshmi Narayan ,&nbsp;Xu Lu ,&nbsp;Du Siwei ,&nbsp;Varun Chaudhary ,&nbsp;Li Hua ,&nbsp;Dong ZhiLi","doi":"10.1016/j.ijhydene.2025.03.222","DOIUrl":null,"url":null,"abstract":"<div><div>In the quest to achieve net zero emissions, there is a push for using hydrogen as a fuel in mobility and power generation applications. However, when hydrogen interacts with structural metallic components used in these applications, there is a risk of hydrogen-induced embrittlement in them. Additive manufacturing (AM) is an alternate manufacturing method for designing structural metallic components, which offers avenues for tailoring of microstructural features and formation of non-equilibrium phases that have a profound effect on their mechanical properties. Consequently, the interaction of hydrogen with AM fabricated alloys is expected to have a different effect on their structural integrity. This paper presents a comprehensive review of the physical processes and the fundamental scientific principles that govern the metallurgical structure and properties of alloys produced through different AM methods. It then discusses the detection of hydrogen and mechanisms of hydrogen embrittlement in different metallic alloys. Finally, the latest research on hydrogen embrittlement of additively manufactured metals and alloys is summarized.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"121 ","pages":"Pages 245-272"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925013369","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the quest to achieve net zero emissions, there is a push for using hydrogen as a fuel in mobility and power generation applications. However, when hydrogen interacts with structural metallic components used in these applications, there is a risk of hydrogen-induced embrittlement in them. Additive manufacturing (AM) is an alternate manufacturing method for designing structural metallic components, which offers avenues for tailoring of microstructural features and formation of non-equilibrium phases that have a profound effect on their mechanical properties. Consequently, the interaction of hydrogen with AM fabricated alloys is expected to have a different effect on their structural integrity. This paper presents a comprehensive review of the physical processes and the fundamental scientific principles that govern the metallurgical structure and properties of alloys produced through different AM methods. It then discusses the detection of hydrogen and mechanisms of hydrogen embrittlement in different metallic alloys. Finally, the latest research on hydrogen embrittlement of additively manufactured metals and alloys is summarized.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信