Classification and prediction of flexural properties of bamboo slices made from flattened bamboo with a gradient structure based on GA-BP neural network model
Yuting Yang , Yu Luan , Jiarui Xu , Chaoran Lin , Yan He , Qin Su , Menghong Jiang , Jianchang Lian , Xuecai Ye , Long Feng , Meiling Chen , Changhua Fang
{"title":"Classification and prediction of flexural properties of bamboo slices made from flattened bamboo with a gradient structure based on GA-BP neural network model","authors":"Yuting Yang , Yu Luan , Jiarui Xu , Chaoran Lin , Yan He , Qin Su , Menghong Jiang , Jianchang Lian , Xuecai Ye , Long Feng , Meiling Chen , Changhua Fang","doi":"10.1016/j.compositesb.2025.112446","DOIUrl":null,"url":null,"abstract":"<div><div>Bamboo slices (BS) have been successfully used in bamboo winding composites due to their excellent flexural properties. However, BS with a gradient structure is prone to breakage easily during the winding process, particularly when varying thicknesses are involved. This study investigated flexural properties and size effects of BS, as well as prediction of their flexural properties. A mathematical relationship was established between fiber content of BS and its radial position, revealing an exponential decay function with an average fit quality of 0.9. The flexural strength, flexural modulus and radius of curvature of BS increased with higher fiber content. However, for BS with a thickness of 0.7 mm, the radius of curvature exhibited an inverse relationship with fiber content when the load was applied to the side of BS with fewer vascular bundles. Analysis indicated that BS with thicknesses of 0.3 mm and 0.5 mm can be considered homogeneous materials, while BS with a thickness of 0.7 mm retained the gradient structure and properties of bamboo culm wall. Additionally, BS showed a significant size effect, where thicker BS displayed lower strength due to defect effect, variation of length-thickness ratio and hoop effect. At last, a GA-BP neural network model was developed and validated as an effective tool for predicting BS flexural properties based on their radial position, achieving an accuracy of over 95 %. This study provides valuable insights into the flexural properties and size effects of BS, providing a scientific foundation and technical support for the development of bamboo winding products.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"299 ","pages":"Article 112446"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825003476","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bamboo slices (BS) have been successfully used in bamboo winding composites due to their excellent flexural properties. However, BS with a gradient structure is prone to breakage easily during the winding process, particularly when varying thicknesses are involved. This study investigated flexural properties and size effects of BS, as well as prediction of their flexural properties. A mathematical relationship was established between fiber content of BS and its radial position, revealing an exponential decay function with an average fit quality of 0.9. The flexural strength, flexural modulus and radius of curvature of BS increased with higher fiber content. However, for BS with a thickness of 0.7 mm, the radius of curvature exhibited an inverse relationship with fiber content when the load was applied to the side of BS with fewer vascular bundles. Analysis indicated that BS with thicknesses of 0.3 mm and 0.5 mm can be considered homogeneous materials, while BS with a thickness of 0.7 mm retained the gradient structure and properties of bamboo culm wall. Additionally, BS showed a significant size effect, where thicker BS displayed lower strength due to defect effect, variation of length-thickness ratio and hoop effect. At last, a GA-BP neural network model was developed and validated as an effective tool for predicting BS flexural properties based on their radial position, achieving an accuracy of over 95 %. This study provides valuable insights into the flexural properties and size effects of BS, providing a scientific foundation and technical support for the development of bamboo winding products.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.