How to forecast daily carbon emissions during public health emergencies: A novel self-attention multi-neuron time series model

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yilong Wang , Haoran Wang , Junjie Chen , Yigang Wei , Yan Li
{"title":"How to forecast daily carbon emissions during public health emergencies: A novel self-attention multi-neuron time series model","authors":"Yilong Wang ,&nbsp;Haoran Wang ,&nbsp;Junjie Chen ,&nbsp;Yigang Wei ,&nbsp;Yan Li","doi":"10.1016/j.apr.2025.102502","DOIUrl":null,"url":null,"abstract":"<div><div>Affected by numerous uncertainties, climate change is a critical issue linked to carbon emissions that warm the planet. Although scholars have conducted detailed research on carbon emissions and established predictive models for them, there are few models specifically designed for predicting carbon emissions during public health emergencies. With the concentrated outbreak of various uncertain factors, organizations and institutions urgently need a model capable of predicting carbon emissions during public health emergencies. This study introduces a novel self-attention multi-neuron time series (SAMNTS) model to evaluate the previously unexplored impact of public health emergencies on carbon emissions. Specifically, we have designed a more comprehensive deep learning prediction framework that can effectively utilize a large amount of relevant data to conduct detailed reasoning and analysis on the issue of carbon emissions, enabling more accurate predictions of daily carbon emissions. To better test its effectiveness, we used COVID-19 as an example to test the model. The results proved that the model can effectively make predictions and analyze various factors that affect carbon emissions.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 6","pages":"Article 102502"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104225001047","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Affected by numerous uncertainties, climate change is a critical issue linked to carbon emissions that warm the planet. Although scholars have conducted detailed research on carbon emissions and established predictive models for them, there are few models specifically designed for predicting carbon emissions during public health emergencies. With the concentrated outbreak of various uncertain factors, organizations and institutions urgently need a model capable of predicting carbon emissions during public health emergencies. This study introduces a novel self-attention multi-neuron time series (SAMNTS) model to evaluate the previously unexplored impact of public health emergencies on carbon emissions. Specifically, we have designed a more comprehensive deep learning prediction framework that can effectively utilize a large amount of relevant data to conduct detailed reasoning and analysis on the issue of carbon emissions, enabling more accurate predictions of daily carbon emissions. To better test its effectiveness, we used COVID-19 as an example to test the model. The results proved that the model can effectively make predictions and analyze various factors that affect carbon emissions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信