Machine learning-based estimation of agricultural tyre sinkage: A streamlit web application

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Rajesh Yadav, Hifjur Raheman
{"title":"Machine learning-based estimation of agricultural tyre sinkage: A streamlit web application","authors":"Rajesh Yadav,&nbsp;Hifjur Raheman","doi":"10.1016/j.jterra.2025.101055","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of wheel slip, drawbar pull, and soil strength on agricultural tyre sinkage under varying normal loads and inflation pressures. A controlled experiment was conducted with a 13.6–28 bias ply tyre using single wheel tester in a soil bin, measuring tyre sinkage, drawbar pull, and wheel slip across different conditions. Machine learning models, including Artificial Neural Network (ANN) and Support Vector Regression (SVR), were developed to predict tyre sinkage based on key variables, with hyperparameter tuning to optimize model performance. The SVR model outperformed the ANN model, with Coefficient of determination (R<sup>2</sup>) and Mean Squared Errors (MSE) as 0.997 and 0.8 for training; 0.981 and 4.3 mm for testing, respectively. The Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were also significantly lower for SVR, with MAPE values of 2.58 % (training) and 6.94 % (testing). The optimized SVR model was integrated into a Streamlit web application, offering a user-friendly platform for real-time predictions of tyre sinkage. This application had significant potential for enhancing tractive efficiency and minimizing soil degradation in agricultural practices. The study highlighted the efficacy of machine learning techniques in modelling tyre sinkage.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"119 ","pages":"Article 101055"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489825000114","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of wheel slip, drawbar pull, and soil strength on agricultural tyre sinkage under varying normal loads and inflation pressures. A controlled experiment was conducted with a 13.6–28 bias ply tyre using single wheel tester in a soil bin, measuring tyre sinkage, drawbar pull, and wheel slip across different conditions. Machine learning models, including Artificial Neural Network (ANN) and Support Vector Regression (SVR), were developed to predict tyre sinkage based on key variables, with hyperparameter tuning to optimize model performance. The SVR model outperformed the ANN model, with Coefficient of determination (R2) and Mean Squared Errors (MSE) as 0.997 and 0.8 for training; 0.981 and 4.3 mm for testing, respectively. The Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were also significantly lower for SVR, with MAPE values of 2.58 % (training) and 6.94 % (testing). The optimized SVR model was integrated into a Streamlit web application, offering a user-friendly platform for real-time predictions of tyre sinkage. This application had significant potential for enhancing tractive efficiency and minimizing soil degradation in agricultural practices. The study highlighted the efficacy of machine learning techniques in modelling tyre sinkage.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信