Biaxial bending failure behavior of laminated composite plates under ring-on-ring loading: Effect of layups and interactive terms in failure criteria

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING
Junru Li , Weiyi Kong , Weijie Zhang , Yiding Li , Xuan Zhang , Shibo Yan
{"title":"Biaxial bending failure behavior of laminated composite plates under ring-on-ring loading: Effect of layups and interactive terms in failure criteria","authors":"Junru Li ,&nbsp;Weiyi Kong ,&nbsp;Weijie Zhang ,&nbsp;Yiding Li ,&nbsp;Xuan Zhang ,&nbsp;Shibo Yan","doi":"10.1016/j.compositesa.2025.108883","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the biaxial bending failure behavior of laminated composites, through ring-on-ring loading as described by the ASTM C1499 standard, originally developed for isotropic materials. Cross-ply and quasi-isotropic layups of two thicknesses were tested to assess failure mechanism under layup effect. Thin plates exhibited pronounced nonlinear stiffness across different layups while differences diminished in thick laminates. A numerical model employing the recently formulated Fully Rationalized Tsai-Wu failure criterion and further extending the criterion to identify failure modes to facilitate property degradation is developed for failure prediction under multiaxial stress states, aligning well with experimental results without requiring fitting model parameters. The inclusion of interactive terms in the criterion successfully captured multiaxial failure compared to non-interactive ones. Further stress analysis indicates the ASTM C1499 standard is not entirely applicable to laminates regarding equibiaxial flexural strength but highlights its potential for biaxial tensile testing of unidirectional laminates under non-equal stress ratios.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"194 ","pages":"Article 108883"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25001770","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the biaxial bending failure behavior of laminated composites, through ring-on-ring loading as described by the ASTM C1499 standard, originally developed for isotropic materials. Cross-ply and quasi-isotropic layups of two thicknesses were tested to assess failure mechanism under layup effect. Thin plates exhibited pronounced nonlinear stiffness across different layups while differences diminished in thick laminates. A numerical model employing the recently formulated Fully Rationalized Tsai-Wu failure criterion and further extending the criterion to identify failure modes to facilitate property degradation is developed for failure prediction under multiaxial stress states, aligning well with experimental results without requiring fitting model parameters. The inclusion of interactive terms in the criterion successfully captured multiaxial failure compared to non-interactive ones. Further stress analysis indicates the ASTM C1499 standard is not entirely applicable to laminates regarding equibiaxial flexural strength but highlights its potential for biaxial tensile testing of unidirectional laminates under non-equal stress ratios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信