Germán Robert , Alejandro Enet , Laura Saavedra , Ramiro Lascano
{"title":"Redox regulation of autophagy in Arabidopsis: The different ROS effects","authors":"Germán Robert , Alejandro Enet , Laura Saavedra , Ramiro Lascano","doi":"10.1016/j.plaphy.2025.109800","DOIUrl":null,"url":null,"abstract":"<div><div>Autophagy plays a key role in the responses to different stress condition in plants. Reactive oxygen species (ROS) are common modulators of stress responses, having both toxic and signaling functions. In this context, the relationship between ROS and autophagy regulation remains unclear, and in some aspects, contradictory. In this study, we employed pharmacological and genetic approaches to investigate the effects of different ROS on the cytoplastic redox state and autophagic flux in <em>Arabidopsis thaliana</em>. Our results demonstrated that oxidative treatments with H<sub>2</sub>O<sub>2</sub> and MV, which drastically increased the oxidized state of the cytoplasm, reduced the autophagic flux. Conversely, singlet oxygen, which did not have significant effects on the cytoplasmic redox state, increased the autophagic flux. Additionally, our findings indicated that after H<sub>2</sub>O<sub>2</sub> and high light treatments and during the recovery period, the cytoplasm returned to its reduced state, while autophagy was markedly induced. In summary, our study unveils the differential effects of ROS on the autophagic flux, establishing a correlation with the redox state of the cytoplasm. Moreover, it emphasizes the dynamic nature of autophagy in response to oxidative stress and the subsequent recovery period.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"223 ","pages":"Article 109800"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825003286","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Autophagy plays a key role in the responses to different stress condition in plants. Reactive oxygen species (ROS) are common modulators of stress responses, having both toxic and signaling functions. In this context, the relationship between ROS and autophagy regulation remains unclear, and in some aspects, contradictory. In this study, we employed pharmacological and genetic approaches to investigate the effects of different ROS on the cytoplastic redox state and autophagic flux in Arabidopsis thaliana. Our results demonstrated that oxidative treatments with H2O2 and MV, which drastically increased the oxidized state of the cytoplasm, reduced the autophagic flux. Conversely, singlet oxygen, which did not have significant effects on the cytoplasmic redox state, increased the autophagic flux. Additionally, our findings indicated that after H2O2 and high light treatments and during the recovery period, the cytoplasm returned to its reduced state, while autophagy was markedly induced. In summary, our study unveils the differential effects of ROS on the autophagic flux, establishing a correlation with the redox state of the cytoplasm. Moreover, it emphasizes the dynamic nature of autophagy in response to oxidative stress and the subsequent recovery period.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.