Terahertz hybrid metamaterial switcher between asymmetric transmission and linear dichroism

IF 4.4 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abdul Jalal, Nannan Li, Yichun Chen, Hui Li
{"title":"Terahertz hybrid metamaterial switcher between asymmetric transmission and linear dichroism","authors":"Abdul Jalal,&nbsp;Nannan Li,&nbsp;Yichun Chen,&nbsp;Hui Li","doi":"10.1016/j.rinp.2025.108229","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a hybrid metamaterial that operates as a highly switchable device, dynamically transitioning between asymmetric transmission (AT) and linear dichroism (LD) functionalities within the terahertz (THz) spectrum. Leveraging the phase-transition properties of vanadium dioxide (VO<sub>2</sub>), which shifts from an insulating to a conductive metallic state at elevated temperatures, the proposed metamaterial enables tunable control over its optical characteristics. In the insulating phase, the structure achieves remarkable AT, with transmission coefficients reaching 0.95, supporting selective polarization conversion over an extensive frequency range (0.2–1.0 THz). Upon transitioning VO<sub>2</sub> to a metallic state, the AT effect diminishes significantly, allowing the device to exhibit LD by selectively absorbing linearly polarized THz waves. This reconfigurable behavior underscores the potential of phase-change materials to advance the field of active THz metamaterials, with applications in polarization manipulation, selective THz absorption, and tunable optoelectronic devices.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"72 ","pages":"Article 108229"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725001238","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a hybrid metamaterial that operates as a highly switchable device, dynamically transitioning between asymmetric transmission (AT) and linear dichroism (LD) functionalities within the terahertz (THz) spectrum. Leveraging the phase-transition properties of vanadium dioxide (VO2), which shifts from an insulating to a conductive metallic state at elevated temperatures, the proposed metamaterial enables tunable control over its optical characteristics. In the insulating phase, the structure achieves remarkable AT, with transmission coefficients reaching 0.95, supporting selective polarization conversion over an extensive frequency range (0.2–1.0 THz). Upon transitioning VO2 to a metallic state, the AT effect diminishes significantly, allowing the device to exhibit LD by selectively absorbing linearly polarized THz waves. This reconfigurable behavior underscores the potential of phase-change materials to advance the field of active THz metamaterials, with applications in polarization manipulation, selective THz absorption, and tunable optoelectronic devices.
不对称传输和线性二色性之间的太赫兹混合超材料开关
这项工作介绍了一种混合超材料,它作为一种高度可切换的器件,在太赫兹(THz)频谱内动态地在不对称传输(AT)和线性二色(LD)功能之间转换。利用二氧化钒(VO2)的相变特性,在高温下从绝缘状态转变为导电金属状态,所提出的超材料可以对其光学特性进行可调控制。在绝缘阶段,该结构实现了显著的AT,透射系数达到0.95,支持在广泛的频率范围(0.2-1.0太赫兹)内的选择性极化转换。在将VO2过渡到金属态后,AT效应显着减弱,允许器件通过选择性吸收线极化太赫兹波来显示LD。这种可重构行为强调了相变材料在推进有源太赫兹超材料领域的潜力,在偏振操纵、选择性太赫兹吸收和可调谐光电器件方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Physics
Results in Physics MATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍: Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics. Results in Physics welcomes three types of papers: 1. Full research papers 2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as: - Data and/or a plot plus a description - Description of a new method or instrumentation - Negative results - Concept or design study 3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信