Manufacturing-Driven Insights into Structure, Mechanics, and Permeability of Asymmetric LSCF Membranes via Freeze Casting and Tape Casting

IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS
Valdir Pereira Junior , Priscila Lemes , Murilo Daniel de Mello Innocentini , Mara Gabriela Novy Quadri , Dachamir Hotza , Sergio Yesid Gómez González
{"title":"Manufacturing-Driven Insights into Structure, Mechanics, and Permeability of Asymmetric LSCF Membranes via Freeze Casting and Tape Casting","authors":"Valdir Pereira Junior ,&nbsp;Priscila Lemes ,&nbsp;Murilo Daniel de Mello Innocentini ,&nbsp;Mara Gabriela Novy Quadri ,&nbsp;Dachamir Hotza ,&nbsp;Sergio Yesid Gómez González","doi":"10.1016/j.oceram.2025.100772","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of dense membranes is influenced by both material properties and design features, with thinner membranes exhibiting faster transport rates than thicker ones. However, mechanical limitations restrict the use of standalone thin membranes. A hierarchical structure approach is proposed to address this issue, consisting of a thin, dense layer supported by a porous substrate that provides mechanical strength. The porous support is engineered through microstructuring the pore architecture to enhance strength and permeation rates, as it governs overall oxygen transport in asymmetric membranes. This study combines freeze casting and tape casting to fabricate asymmetric LSCF membranes. The porous supports were manufactured using freeze casting, studying the effects of the freezing method, solids load, and binder concentration systematically evaluated through experimental design. The interaction between these variables and their impact on mechanical properties, porosity, and permeability was thoroughly analyzed. The freezing method significantly altered pore directionality, connectivity, stress strength, fracture strain, and permeability. While standalone dense membranes exhibited low mechanical strength, the porous support demonstrated up to 13-fold mechanical strength. The dense, thin membrane, produced by tape casting, was successfully coupled with the porous support, with no cracking or delamination observed at the interface after deposition and co-sintering.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"22 ","pages":"Article 100772"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539525000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of dense membranes is influenced by both material properties and design features, with thinner membranes exhibiting faster transport rates than thicker ones. However, mechanical limitations restrict the use of standalone thin membranes. A hierarchical structure approach is proposed to address this issue, consisting of a thin, dense layer supported by a porous substrate that provides mechanical strength. The porous support is engineered through microstructuring the pore architecture to enhance strength and permeation rates, as it governs overall oxygen transport in asymmetric membranes. This study combines freeze casting and tape casting to fabricate asymmetric LSCF membranes. The porous supports were manufactured using freeze casting, studying the effects of the freezing method, solids load, and binder concentration systematically evaluated through experimental design. The interaction between these variables and their impact on mechanical properties, porosity, and permeability was thoroughly analyzed. The freezing method significantly altered pore directionality, connectivity, stress strength, fracture strain, and permeability. While standalone dense membranes exhibited low mechanical strength, the porous support demonstrated up to 13-fold mechanical strength. The dense, thin membrane, produced by tape casting, was successfully coupled with the porous support, with no cracking or delamination observed at the interface after deposition and co-sintering.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Ceramics
Open Ceramics Materials Science-Materials Chemistry
CiteScore
4.20
自引率
0.00%
发文量
102
审稿时长
67 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信