{"title":"Grain-size dependence of plastic-brittle transgranular fracture","authors":"Jean-Michel Scherer , Mythreyi Ramesh , Blaise Bourdin , Kaushik Bhattacharya","doi":"10.1016/j.jmps.2025.106116","DOIUrl":null,"url":null,"abstract":"<div><div>The role of grain size in determining fracture toughness in metals is incompletely understood with apparently contradictory experimental observations. We study this grain-size dependence computationally by building a model that combines the phase-field formulation of fracture mechanics with dislocation density-based crystal plasticity. We apply the model to cleavage fracture of body-centered cubic materials in plane strain conditions, and find non-monotonic grain-size dependence of plastic-brittle transgranular fracture. We find two mechanisms at play. The first is the nucleation of failure due to cross-slip in critically located grains within transgranular band of localized deformation, and this follows the classical Hall–Petch law that predicts a higher failure stress for smaller grains. The second is the resistance to the propagation of a mode I crack, where grain boundaries can potentially pin a crack, and this follows an inverse Hall–Petch law with higher toughness for larger grains. The result of the competition between the two mechanisms gives rise to non-monotonic behavior and reconciles the apparently contradictory experimental observations.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"200 ","pages":"Article 106116"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625000924","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The role of grain size in determining fracture toughness in metals is incompletely understood with apparently contradictory experimental observations. We study this grain-size dependence computationally by building a model that combines the phase-field formulation of fracture mechanics with dislocation density-based crystal plasticity. We apply the model to cleavage fracture of body-centered cubic materials in plane strain conditions, and find non-monotonic grain-size dependence of plastic-brittle transgranular fracture. We find two mechanisms at play. The first is the nucleation of failure due to cross-slip in critically located grains within transgranular band of localized deformation, and this follows the classical Hall–Petch law that predicts a higher failure stress for smaller grains. The second is the resistance to the propagation of a mode I crack, where grain boundaries can potentially pin a crack, and this follows an inverse Hall–Petch law with higher toughness for larger grains. The result of the competition between the two mechanisms gives rise to non-monotonic behavior and reconciles the apparently contradictory experimental observations.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.