Mingyang Xu , Qixuan Zeng , Weidong Song , Zhonghua Du , Mingchuan Yang , Han Ma , Rongmei Luo , Jiangbo Wang , Meng Wang , Chun Guo
{"title":"Mechanical characteristics of additive manufactured biomimetic gradient circular honeycombs with nested strategy under static and dynamic loading","authors":"Mingyang Xu , Qixuan Zeng , Weidong Song , Zhonghua Du , Mingchuan Yang , Han Ma , Rongmei Luo , Jiangbo Wang , Meng Wang , Chun Guo","doi":"10.1016/j.ijimpeng.2025.105338","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by the microstructure of bamboo and the membrane wing structure of bats in nature, this study proposes nested self-similar gradient circular honeycomb (WNSGH) and nested non-self-similar gradient circular honeycomb (SNNGH). The deformation patterns and energy absorption properties of WNSGH and SNNGH under quasi-static compression, drop weight impact and Kolsky dynamic impact loading are systematically investigated using both experimental and finite element methods. The energy absorption mechanisms of the representative unit cells are elucidated through a series of finite element calculations. The results from both experimental studies and numerical simulations demonstrated that the nested gradient strategy could significantly enhance the specific energy absorption (<em>SEA</em>) of regular circular honeycomb (RCH). Specifically, under quasi-static loading, WNSGH and SNNGH exhibited increases of 66.8 % and 85 %, respectively, and improvements of 53.4 % and 14 %, respectively, under Kolsky bar dynamic impact loading. The deformation patterns of the two gradient honeycombs were found to be sensitive to the loading rate. Further findings indicated that the energy absorption performance of WNSGH and SNNGH outperformed many other existing circular honeycomb structures with different gradient strategies.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"202 ","pages":"Article 105338"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X25001198","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by the microstructure of bamboo and the membrane wing structure of bats in nature, this study proposes nested self-similar gradient circular honeycomb (WNSGH) and nested non-self-similar gradient circular honeycomb (SNNGH). The deformation patterns and energy absorption properties of WNSGH and SNNGH under quasi-static compression, drop weight impact and Kolsky dynamic impact loading are systematically investigated using both experimental and finite element methods. The energy absorption mechanisms of the representative unit cells are elucidated through a series of finite element calculations. The results from both experimental studies and numerical simulations demonstrated that the nested gradient strategy could significantly enhance the specific energy absorption (SEA) of regular circular honeycomb (RCH). Specifically, under quasi-static loading, WNSGH and SNNGH exhibited increases of 66.8 % and 85 %, respectively, and improvements of 53.4 % and 14 %, respectively, under Kolsky bar dynamic impact loading. The deformation patterns of the two gradient honeycombs were found to be sensitive to the loading rate. Further findings indicated that the energy absorption performance of WNSGH and SNNGH outperformed many other existing circular honeycomb structures with different gradient strategies.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications