Mechanical characteristics of additive manufactured biomimetic gradient circular honeycombs with nested strategy under static and dynamic loading

IF 5.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Mingyang Xu , Qixuan Zeng , Weidong Song , Zhonghua Du , Mingchuan Yang , Han Ma , Rongmei Luo , Jiangbo Wang , Meng Wang , Chun Guo
{"title":"Mechanical characteristics of additive manufactured biomimetic gradient circular honeycombs with nested strategy under static and dynamic loading","authors":"Mingyang Xu ,&nbsp;Qixuan Zeng ,&nbsp;Weidong Song ,&nbsp;Zhonghua Du ,&nbsp;Mingchuan Yang ,&nbsp;Han Ma ,&nbsp;Rongmei Luo ,&nbsp;Jiangbo Wang ,&nbsp;Meng Wang ,&nbsp;Chun Guo","doi":"10.1016/j.ijimpeng.2025.105338","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by the microstructure of bamboo and the membrane wing structure of bats in nature, this study proposes nested self-similar gradient circular honeycomb (WNSGH) and nested non-self-similar gradient circular honeycomb (SNNGH). The deformation patterns and energy absorption properties of WNSGH and SNNGH under quasi-static compression, drop weight impact and Kolsky dynamic impact loading are systematically investigated using both experimental and finite element methods. The energy absorption mechanisms of the representative unit cells are elucidated through a series of finite element calculations. The results from both experimental studies and numerical simulations demonstrated that the nested gradient strategy could significantly enhance the specific energy absorption (<em>SEA</em>) of regular circular honeycomb (RCH). Specifically, under quasi-static loading, WNSGH and SNNGH exhibited increases of 66.8 % and 85 %, respectively, and improvements of 53.4 % and 14 %, respectively, under Kolsky bar dynamic impact loading. The deformation patterns of the two gradient honeycombs were found to be sensitive to the loading rate. Further findings indicated that the energy absorption performance of WNSGH and SNNGH outperformed many other existing circular honeycomb structures with different gradient strategies.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"202 ","pages":"Article 105338"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X25001198","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the microstructure of bamboo and the membrane wing structure of bats in nature, this study proposes nested self-similar gradient circular honeycomb (WNSGH) and nested non-self-similar gradient circular honeycomb (SNNGH). The deformation patterns and energy absorption properties of WNSGH and SNNGH under quasi-static compression, drop weight impact and Kolsky dynamic impact loading are systematically investigated using both experimental and finite element methods. The energy absorption mechanisms of the representative unit cells are elucidated through a series of finite element calculations. The results from both experimental studies and numerical simulations demonstrated that the nested gradient strategy could significantly enhance the specific energy absorption (SEA) of regular circular honeycomb (RCH). Specifically, under quasi-static loading, WNSGH and SNNGH exhibited increases of 66.8 % and 85 %, respectively, and improvements of 53.4 % and 14 %, respectively, under Kolsky bar dynamic impact loading. The deformation patterns of the two gradient honeycombs were found to be sensitive to the loading rate. Further findings indicated that the energy absorption performance of WNSGH and SNNGH outperformed many other existing circular honeycomb structures with different gradient strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Impact Engineering
International Journal of Impact Engineering 工程技术-工程:机械
CiteScore
8.70
自引率
13.70%
发文量
241
审稿时长
52 days
期刊介绍: The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them: -Behaviour and failure of structures and materials under impact and blast loading -Systems for protection and absorption of impact and blast loading -Terminal ballistics -Dynamic behaviour and failure of materials including plasticity and fracture -Stress waves -Structural crashworthiness -High-rate mechanical and forming processes -Impact, blast and high-rate loading/measurement techniques and their applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信