National-scale mapping topsoil organic carbon of cropland in China using multitemporal Sentinel-2 images

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE
Jie Xue , Xianglin Zhang , Songchao Chen , Zhongxing Chen , Rui Lu , Feng Liu , Bas van Wesemael , Zhou Shi
{"title":"National-scale mapping topsoil organic carbon of cropland in China using multitemporal Sentinel-2 images","authors":"Jie Xue ,&nbsp;Xianglin Zhang ,&nbsp;Songchao Chen ,&nbsp;Zhongxing Chen ,&nbsp;Rui Lu ,&nbsp;Feng Liu ,&nbsp;Bas van Wesemael ,&nbsp;Zhou Shi","doi":"10.1016/j.geoderma.2025.117272","DOIUrl":null,"url":null,"abstract":"<div><div>Precise monitoring of soil organic carbon (SOC) is urgently needed in agricultural regions to tackle global challenges like food security, water regulation, land degradation, and climate change. Remote sensing technology has emerged as a powerful method for detecting variations in SOC at localized scales. However, its application on a broader, national scale faces limitations, especially in countries like China, where soil landscapes exhibit significant diversity. This study aimed to couple bare soil reflectance and conventional environmental covariates to map Chinese cropland SOC content at a 10-m spatial resolution. First, a new time-series bare soil extraction method, the Two-Dimensional Bare Soil Separation Algorithm, was applied, utilizing Sentinel-2 images from 2018 to 2022 to generate a continuous spectral reflectance composite. Then, nine indices with the strongest correlation to SOC were selected. Additionally, a list of environmental covariates was prepared based on SCORPAN model. Finally, bootstrapping random forest models were fitted using the covariates selected through forward recursive feature selection (FRFS), and the spatial prediction SOC map was created. The results indicated that the framework was suitable for mapping SOC in croplands of China, with the best model using remote sensing indices and environmental covariates selected through FRFS achieving an R<sup>2</sup> of 0.62, an RMSE of 4.84 g kg<sup>−1</sup>, and an uncertainty depicted by a 90 % prediction interval range of 17.88 g kg<sup>−1</sup>. The final map showed that the Northeast China had the highest SOC content in cropland. Climatic conditions, position, and remote sensing indices are key covariates in national-scale SOC estimation. This study can be easily implemented across broad areas for the prediction of SOC with computational efficiency. The 10-m spatial resolution SOC map of China contributes to land management and the development of policies for precision agriculture.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"456 ","pages":"Article 117272"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125001107","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Precise monitoring of soil organic carbon (SOC) is urgently needed in agricultural regions to tackle global challenges like food security, water regulation, land degradation, and climate change. Remote sensing technology has emerged as a powerful method for detecting variations in SOC at localized scales. However, its application on a broader, national scale faces limitations, especially in countries like China, where soil landscapes exhibit significant diversity. This study aimed to couple bare soil reflectance and conventional environmental covariates to map Chinese cropland SOC content at a 10-m spatial resolution. First, a new time-series bare soil extraction method, the Two-Dimensional Bare Soil Separation Algorithm, was applied, utilizing Sentinel-2 images from 2018 to 2022 to generate a continuous spectral reflectance composite. Then, nine indices with the strongest correlation to SOC were selected. Additionally, a list of environmental covariates was prepared based on SCORPAN model. Finally, bootstrapping random forest models were fitted using the covariates selected through forward recursive feature selection (FRFS), and the spatial prediction SOC map was created. The results indicated that the framework was suitable for mapping SOC in croplands of China, with the best model using remote sensing indices and environmental covariates selected through FRFS achieving an R2 of 0.62, an RMSE of 4.84 g kg−1, and an uncertainty depicted by a 90 % prediction interval range of 17.88 g kg−1. The final map showed that the Northeast China had the highest SOC content in cropland. Climatic conditions, position, and remote sensing indices are key covariates in national-scale SOC estimation. This study can be easily implemented across broad areas for the prediction of SOC with computational efficiency. The 10-m spatial resolution SOC map of China contributes to land management and the development of policies for precision agriculture.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信