Israr Ud Din , M.S. Sikandar Bathusha , Kamran A. Khan
{"title":"Effects of liquid rubber-modified epoxy on the fracture toughness of rGO-Coated fabric piezoresistive composites","authors":"Israr Ud Din , M.S. Sikandar Bathusha , Kamran A. Khan","doi":"10.1016/j.coco.2025.102368","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a reduced graphene oxide (rGO)-coated glass fabric-based piezoresistive composite with enhanced fracture toughness was developed using a liquid rubber-modified epoxy system. Carboxyl-terminated butadiene acrylonitrile copolymer (CTBN)-modified epoxy was infused into the composite via the vacuum-assisted resin transfer molding (VARTM) process, embedding the partially reduced rGO-coated glass fabric. The electromechanical performance of the composite, tested under tensile, Mode I, and Mode II conditions, was compared to unmodified epoxy-based samples. The results demonstrated a significant improvement in the interlaminar fracture toughness of the CTBN-modified epoxy samples without affecting the piezoresistive sensitivity. Specifically, adding 10 wt% of CTBN to the epoxy led to a ∼38 % increase in Mode I fracture toughness and a ∼16 % increase in Mode II fracture toughness. However, a 5 % decrease in elastic modulus was observed during tensile testing. Additionally, the CTBN-modified epoxy samples exhibited higher tensile strain at failure compared to the unmodified samples, indicating enhanced ductility due to the addition of CTBN. Scanning electron microscopy (SEM) images confirmed the highly deformed, ductile nature of the fractured surfaces in the CTBN-modified samples.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"56 ","pages":"Article 102368"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925001214","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a reduced graphene oxide (rGO)-coated glass fabric-based piezoresistive composite with enhanced fracture toughness was developed using a liquid rubber-modified epoxy system. Carboxyl-terminated butadiene acrylonitrile copolymer (CTBN)-modified epoxy was infused into the composite via the vacuum-assisted resin transfer molding (VARTM) process, embedding the partially reduced rGO-coated glass fabric. The electromechanical performance of the composite, tested under tensile, Mode I, and Mode II conditions, was compared to unmodified epoxy-based samples. The results demonstrated a significant improvement in the interlaminar fracture toughness of the CTBN-modified epoxy samples without affecting the piezoresistive sensitivity. Specifically, adding 10 wt% of CTBN to the epoxy led to a ∼38 % increase in Mode I fracture toughness and a ∼16 % increase in Mode II fracture toughness. However, a 5 % decrease in elastic modulus was observed during tensile testing. Additionally, the CTBN-modified epoxy samples exhibited higher tensile strain at failure compared to the unmodified samples, indicating enhanced ductility due to the addition of CTBN. Scanning electron microscopy (SEM) images confirmed the highly deformed, ductile nature of the fractured surfaces in the CTBN-modified samples.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.