Vivek Subedi, Sainath Mohan Kumar, Moriah E. Weese-Myers, Ashley E. Ross
{"title":"Innovating carbon-based electrodes for direct neurochemical detection along the brain-immune axis","authors":"Vivek Subedi, Sainath Mohan Kumar, Moriah E. Weese-Myers, Ashley E. Ross","doi":"10.1016/j.coelec.2025.101678","DOIUrl":null,"url":null,"abstract":"<div><div>The use of carbon-based electrodes for direct neurochemical detection along the brain-immune axis is emerging as a promising frontier. Carbon is commonly chosen as an electrode material due to its numerous advantages, including cost-effectiveness, high electrical conductivity, excellent chemical stability, wide electrochemical window, and biocompatibility. To further enhance performance, carbon fibers have been coated with nanomaterials including carbon nanotubes (CNTs), graphene, carbon nanospikes, among others. Traditional carbon electrodes—typically constructed from carbon fibers—are limited by their heterogeneity, which restricts their adaptability. Recent advancements have moved toward developing highly sensitive and selective carbon materials through customization. The current research is increasingly focused on developing alternative materials to replace carbon fibers, with the aim of preventing coating degradation, improving sensitivity, achieving frequency-independent properties, and lowering detection limits. This current opinion discusses the key innovations in modern carbon-based materials for brain-immune studies, with an emphasis on the importance of tailoring surfaces for specific analytes and applications.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"51 ","pages":"Article 101678"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000377","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of carbon-based electrodes for direct neurochemical detection along the brain-immune axis is emerging as a promising frontier. Carbon is commonly chosen as an electrode material due to its numerous advantages, including cost-effectiveness, high electrical conductivity, excellent chemical stability, wide electrochemical window, and biocompatibility. To further enhance performance, carbon fibers have been coated with nanomaterials including carbon nanotubes (CNTs), graphene, carbon nanospikes, among others. Traditional carbon electrodes—typically constructed from carbon fibers—are limited by their heterogeneity, which restricts their adaptability. Recent advancements have moved toward developing highly sensitive and selective carbon materials through customization. The current research is increasingly focused on developing alternative materials to replace carbon fibers, with the aim of preventing coating degradation, improving sensitivity, achieving frequency-independent properties, and lowering detection limits. This current opinion discusses the key innovations in modern carbon-based materials for brain-immune studies, with an emphasis on the importance of tailoring surfaces for specific analytes and applications.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •