Adaptive bigraph-based multi-view unsupervised dimensionality reduction

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qianyao Qiang , Bin Zhang , Chen Jason Zhang , Feiping Nie
{"title":"Adaptive bigraph-based multi-view unsupervised dimensionality reduction","authors":"Qianyao Qiang ,&nbsp;Bin Zhang ,&nbsp;Chen Jason Zhang ,&nbsp;Feiping Nie","doi":"10.1016/j.neunet.2025.107424","DOIUrl":null,"url":null,"abstract":"<div><div>As a crucial machine learning technology, graph-based multi-view unsupervised dimensionality reduction aims to learn compact low-dimensional representations for unlabeled multi-view data using graph structures. However, it faces several challenges, including the integration of multiple heterogeneous views, the absence of label guidance, the rigidity of predefined similarity graphs, and high computational intensity. To address these issues, we propose a novel method called adaptive Bigraph-based Multi-view Unsupervised Dimensionality Reduction (BMUDR). BMUDR dynamically learns view-specific anchor sets and adaptively constructs a bigraph shared by multiple views, facilitating the discovery of low-dimensional representations through sample-anchor relationships. The generation of anchors and the construction of anchor similarity matrices are integrated into the dimensionality reduction process. Diverse contributions of different views are automatically weighed to leverage their complementary and consistent properties. In addition, an optimization algorithm is designed to enhance computational efficiency and scalability, and it provides impressive performance in low-dimensional representation learning, as demonstrated by extensive experiments on various benchmark datasets.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107424"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089360802500303X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As a crucial machine learning technology, graph-based multi-view unsupervised dimensionality reduction aims to learn compact low-dimensional representations for unlabeled multi-view data using graph structures. However, it faces several challenges, including the integration of multiple heterogeneous views, the absence of label guidance, the rigidity of predefined similarity graphs, and high computational intensity. To address these issues, we propose a novel method called adaptive Bigraph-based Multi-view Unsupervised Dimensionality Reduction (BMUDR). BMUDR dynamically learns view-specific anchor sets and adaptively constructs a bigraph shared by multiple views, facilitating the discovery of low-dimensional representations through sample-anchor relationships. The generation of anchors and the construction of anchor similarity matrices are integrated into the dimensionality reduction process. Diverse contributions of different views are automatically weighed to leverage their complementary and consistent properties. In addition, an optimization algorithm is designed to enhance computational efficiency and scalability, and it provides impressive performance in low-dimensional representation learning, as demonstrated by extensive experiments on various benchmark datasets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信