Focal cortical dysplasia detection by artificial intelligence using MRI: A systematic review and meta-analysis

IF 2.3 3区 医学 Q2 BEHAVIORAL SCIENCES
Mohammad Dashtkoohi , Delaram J. Ghadimi , Farzan Moodi , Nima Behrang , Ehsan Khormali , Hanieh Mobarak Salari , Nathan T. Cohen , Taha Gholipour , Hamidreza Saligheh Rad
{"title":"Focal cortical dysplasia detection by artificial intelligence using MRI: A systematic review and meta-analysis","authors":"Mohammad Dashtkoohi ,&nbsp;Delaram J. Ghadimi ,&nbsp;Farzan Moodi ,&nbsp;Nima Behrang ,&nbsp;Ehsan Khormali ,&nbsp;Hanieh Mobarak Salari ,&nbsp;Nathan T. Cohen ,&nbsp;Taha Gholipour ,&nbsp;Hamidreza Saligheh Rad","doi":"10.1016/j.yebeh.2025.110403","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Focal cortical dysplasia (FCD) is a common cause of pharmacoresistant epilepsy. However, it can be challenging to detect FCD using MRI alone. This study aimed to review and analyze studies that used machine learning and artificial neural networks (ANN) methods as an additional tool to enhance MRI findings in FCD patients.</div></div><div><h3>Methods</h3><div>A systematic search was conducted in four databases (Embase, PubMed, Scopus, and Web of Science). The quality of the studies was assessed using QUADAS-AI, and a bivariate random-effects model was used for analysis. The main outcome analyzed was the sensitivity and specificity of patient-wise outcomes. Heterogeneity among studies was assessed using I<sup>2</sup>.</div></div><div><h3>Results</h3><div>A total of 41 studies met the inclusion criteria, including 24 ANN-based studies and 17 machine learning studies. Meta-analysis of internal validation datasets showed a pooled sensitivity of 0.81 and specificity of 0.92 for AI-based models in detecting FCD lesions. Meta-analysis of external validation datasets yielded a pooled sensitivity of 0.73 and specificity of 0.66. There was moderate heterogeneity among studies in the external validation dataset, but no significant publication bias was found.</div></div><div><h3>Conclusion</h3><div>Although there is an increasing number of machine learning and ANN-based models for FCD detection, their clinical applicability remains limited. Further refinement and optimization, along with longitudinal studies, are needed to ensure their integration into clinical practice. Addressing the identified limitations and intensifying research efforts will improve their relevance and reliability in real medical scenarios.</div></div>","PeriodicalId":11847,"journal":{"name":"Epilepsy & Behavior","volume":"167 ","pages":"Article 110403"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525505025001428","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Focal cortical dysplasia (FCD) is a common cause of pharmacoresistant epilepsy. However, it can be challenging to detect FCD using MRI alone. This study aimed to review and analyze studies that used machine learning and artificial neural networks (ANN) methods as an additional tool to enhance MRI findings in FCD patients.

Methods

A systematic search was conducted in four databases (Embase, PubMed, Scopus, and Web of Science). The quality of the studies was assessed using QUADAS-AI, and a bivariate random-effects model was used for analysis. The main outcome analyzed was the sensitivity and specificity of patient-wise outcomes. Heterogeneity among studies was assessed using I2.

Results

A total of 41 studies met the inclusion criteria, including 24 ANN-based studies and 17 machine learning studies. Meta-analysis of internal validation datasets showed a pooled sensitivity of 0.81 and specificity of 0.92 for AI-based models in detecting FCD lesions. Meta-analysis of external validation datasets yielded a pooled sensitivity of 0.73 and specificity of 0.66. There was moderate heterogeneity among studies in the external validation dataset, but no significant publication bias was found.

Conclusion

Although there is an increasing number of machine learning and ANN-based models for FCD detection, their clinical applicability remains limited. Further refinement and optimization, along with longitudinal studies, are needed to ensure their integration into clinical practice. Addressing the identified limitations and intensifying research efforts will improve their relevance and reliability in real medical scenarios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epilepsy & Behavior
Epilepsy & Behavior 医学-行为科学
CiteScore
5.40
自引率
15.40%
发文量
385
审稿时长
43 days
期刊介绍: Epilepsy & Behavior is the fastest-growing international journal uniquely devoted to the rapid dissemination of the most current information available on the behavioral aspects of seizures and epilepsy. Epilepsy & Behavior presents original peer-reviewed articles based on laboratory and clinical research. Topics are drawn from a variety of fields, including clinical neurology, neurosurgery, neuropsychiatry, neuropsychology, neurophysiology, neuropharmacology, and neuroimaging. From September 2012 Epilepsy & Behavior stopped accepting Case Reports for publication in the journal. From this date authors who submit to Epilepsy & Behavior will be offered a transfer or asked to resubmit their Case Reports to its new sister journal, Epilepsy & Behavior Case Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信