Liping Wang , Congwei Xie , Jingyi Sui, Jia Yang, Yi Zhou, Tianyue Wang, Feiyu Chen, Xiuming Cui, Ye Yang, Wenping Zhang
{"title":"Microbial degradation of diphenyl ether herbicides past, present and future","authors":"Liping Wang , Congwei Xie , Jingyi Sui, Jia Yang, Yi Zhou, Tianyue Wang, Feiyu Chen, Xiuming Cui, Ye Yang, Wenping Zhang","doi":"10.1016/j.jece.2025.116357","DOIUrl":null,"url":null,"abstract":"<div><div>With its advantages of high efficiency, high selectivity and broad spectrum, diphenyl ether herbicides have become a class of herbicides with a wide range of applications, numerous types and huge amounts of use worldwide. The massive and unregulated use of diphenyl ether herbicides has led to their accumulation in soil and water bodies, altering the structure of soil microbial communities and causing huge economic losses by causing damage to sensitive crops in subsequent crops. Meanwhile, it will also accumulate in the food chain, inducing potential hazards to non-target organisms such as aquatic animals and human beings. Therefore, the importance of developing green removal strategies for diphenyl ether herbicides in polluted environments is increasing. Currently, microbial degradation technology has a broad application prospect due to its simple operation, safety and less likely to cause secondary pollution. A variety of <em>Pseudomonas</em> and <em>Bacillus</em> species have been found to efficiently degrade diphenyl ether herbicides, but fewer studies have been conducted on fungi and actinomycetes. Based on this, this paper summarizes the characteristics of the diphenyl ether herbicide family, the mechanism of toxicity. Microbial resources for degrading diphenyl ether herbicides, degradation pathways and the molecular biological basis of the degradation process are outlined. The aim of this paper is to have a more comprehensive understanding of diphenyl ether herbicides and to provide a research direction for in-depth study of treatment strategies for diphenyl ether herbicide residues in the real environment and discovery of more relevant biodegradable resources.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 3","pages":"Article 116357"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221334372501053X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With its advantages of high efficiency, high selectivity and broad spectrum, diphenyl ether herbicides have become a class of herbicides with a wide range of applications, numerous types and huge amounts of use worldwide. The massive and unregulated use of diphenyl ether herbicides has led to their accumulation in soil and water bodies, altering the structure of soil microbial communities and causing huge economic losses by causing damage to sensitive crops in subsequent crops. Meanwhile, it will also accumulate in the food chain, inducing potential hazards to non-target organisms such as aquatic animals and human beings. Therefore, the importance of developing green removal strategies for diphenyl ether herbicides in polluted environments is increasing. Currently, microbial degradation technology has a broad application prospect due to its simple operation, safety and less likely to cause secondary pollution. A variety of Pseudomonas and Bacillus species have been found to efficiently degrade diphenyl ether herbicides, but fewer studies have been conducted on fungi and actinomycetes. Based on this, this paper summarizes the characteristics of the diphenyl ether herbicide family, the mechanism of toxicity. Microbial resources for degrading diphenyl ether herbicides, degradation pathways and the molecular biological basis of the degradation process are outlined. The aim of this paper is to have a more comprehensive understanding of diphenyl ether herbicides and to provide a research direction for in-depth study of treatment strategies for diphenyl ether herbicide residues in the real environment and discovery of more relevant biodegradable resources.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.