{"title":"Multiscale enhancements in Z-pin reinforcement performance through curing parameters","authors":"Jisiyuan Cheng , Yingjie Xu , Weihong Zhang , Weiwei Liu","doi":"10.1016/j.compscitech.2025.111157","DOIUrl":null,"url":null,"abstract":"<div><div>Z-pinning is employed by composite laminates to enhance interlaminar performances. Z-pinned composites are then cured to obtain a vastly enhanced interlaminar fracture toughness. However, rare research has focused on the curing effects on the mechanical performances of Z-pinned laminates. This paper presents a multiscale experimental and simulation investigation of the curing effects on the individual Z-pin bridging behaviors and the mode Ⅰ interlaminar fracture of multi-pinned laminates by changing holding temperatures and times of cure. The results reveal that a low holding temperature for a long time decreases the cure-induced Z-pin/composite interfacial cracks, thus generating larger Z-pin energy dissipation and a better specimen's load-carrying capacity. Compared with 403 K for 150 min, the Z-pin energy dissipation and interlaminar fracture toughness increased by 32.22 % and 38.82 % by holding at 383 K for 200 min. Mesoscale and macroscale models were developed to predict the cure-induced Z-pin interfacial conditions, Z-pin bridging behaviors, and reinforcement efficiency. Combining the experiments and numerical illustration, this paper presents the possibility of optimizing the Z-pinning performances through the curing profiles.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"266 ","pages":"Article 111157"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825001253","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Z-pinning is employed by composite laminates to enhance interlaminar performances. Z-pinned composites are then cured to obtain a vastly enhanced interlaminar fracture toughness. However, rare research has focused on the curing effects on the mechanical performances of Z-pinned laminates. This paper presents a multiscale experimental and simulation investigation of the curing effects on the individual Z-pin bridging behaviors and the mode Ⅰ interlaminar fracture of multi-pinned laminates by changing holding temperatures and times of cure. The results reveal that a low holding temperature for a long time decreases the cure-induced Z-pin/composite interfacial cracks, thus generating larger Z-pin energy dissipation and a better specimen's load-carrying capacity. Compared with 403 K for 150 min, the Z-pin energy dissipation and interlaminar fracture toughness increased by 32.22 % and 38.82 % by holding at 383 K for 200 min. Mesoscale and macroscale models were developed to predict the cure-induced Z-pin interfacial conditions, Z-pin bridging behaviors, and reinforcement efficiency. Combining the experiments and numerical illustration, this paper presents the possibility of optimizing the Z-pinning performances through the curing profiles.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.