Multiscale enhancements in Z-pin reinforcement performance through curing parameters

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Jisiyuan Cheng , Yingjie Xu , Weihong Zhang , Weiwei Liu
{"title":"Multiscale enhancements in Z-pin reinforcement performance through curing parameters","authors":"Jisiyuan Cheng ,&nbsp;Yingjie Xu ,&nbsp;Weihong Zhang ,&nbsp;Weiwei Liu","doi":"10.1016/j.compscitech.2025.111157","DOIUrl":null,"url":null,"abstract":"<div><div>Z-pinning is employed by composite laminates to enhance interlaminar performances. Z-pinned composites are then cured to obtain a vastly enhanced interlaminar fracture toughness. However, rare research has focused on the curing effects on the mechanical performances of Z-pinned laminates. This paper presents a multiscale experimental and simulation investigation of the curing effects on the individual Z-pin bridging behaviors and the mode Ⅰ interlaminar fracture of multi-pinned laminates by changing holding temperatures and times of cure. The results reveal that a low holding temperature for a long time decreases the cure-induced Z-pin/composite interfacial cracks, thus generating larger Z-pin energy dissipation and a better specimen's load-carrying capacity. Compared with 403 K for 150 min, the Z-pin energy dissipation and interlaminar fracture toughness increased by 32.22 % and 38.82 % by holding at 383 K for 200 min. Mesoscale and macroscale models were developed to predict the cure-induced Z-pin interfacial conditions, Z-pin bridging behaviors, and reinforcement efficiency. Combining the experiments and numerical illustration, this paper presents the possibility of optimizing the Z-pinning performances through the curing profiles.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"266 ","pages":"Article 111157"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825001253","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Z-pinning is employed by composite laminates to enhance interlaminar performances. Z-pinned composites are then cured to obtain a vastly enhanced interlaminar fracture toughness. However, rare research has focused on the curing effects on the mechanical performances of Z-pinned laminates. This paper presents a multiscale experimental and simulation investigation of the curing effects on the individual Z-pin bridging behaviors and the mode Ⅰ interlaminar fracture of multi-pinned laminates by changing holding temperatures and times of cure. The results reveal that a low holding temperature for a long time decreases the cure-induced Z-pin/composite interfacial cracks, thus generating larger Z-pin energy dissipation and a better specimen's load-carrying capacity. Compared with 403 K for 150 min, the Z-pin energy dissipation and interlaminar fracture toughness increased by 32.22 % and 38.82 % by holding at 383 K for 200 min. Mesoscale and macroscale models were developed to predict the cure-induced Z-pin interfacial conditions, Z-pin bridging behaviors, and reinforcement efficiency. Combining the experiments and numerical illustration, this paper presents the possibility of optimizing the Z-pinning performances through the curing profiles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信