A Novel Seamless Magnetic-Based Actuating Mechanism for End-Effector-Based Robotic Rehabilitation Platforms

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Sima Ghafoori;Ali Rabiee;Maryam Norouzi;Musa K. Jouaneh;Reza Abiri
{"title":"A Novel Seamless Magnetic-Based Actuating Mechanism for End-Effector-Based Robotic Rehabilitation Platforms","authors":"Sima Ghafoori;Ali Rabiee;Maryam Norouzi;Musa K. Jouaneh;Reza Abiri","doi":"10.1109/LRA.2025.3551959","DOIUrl":null,"url":null,"abstract":"Rehabilitation robotics continues to confront substantial challenges, particularly in achieving smooth, safe, and intuitive human-robot interactions for upper limb motor training. Many current systems depend on complex mechanical designs, direct physical contact, and multiple sensors, which not only elevate costs but also reduce accessibility. Additionally, delivering seamless weight compensation and precise motion tracking remains a highly complex undertaking. To overcome these obstacles, we have developed a novel magnetic-based actuation mechanism for end-effector robotic rehabilitation. This innovative approach enables smooth, non-contact force transmission, significantly enhancing patient safety and comfort during upper limb training. To ensure consistent performance, we integrated an Extended Kalman Filter (EKF) alongside a controller for real-time position tracking, allowing the system to maintain high accuracy or recover even in the event of sensor malfunction or failure. In a user study with 12 participants, 75% rated the system highly for its smoothness, while 66.7% commended its safety and effective weight compensation. The EKF demonstrated precise tracking performance, with root mean square error (RMSE) values remaining within acceptable limits (under 2 cm). By combining magnetic actuation with advanced closed-loop control algorithms, this system marks a significant advancement in the field of upper limb rehabilitation robotics.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4516-4523"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10930540/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rehabilitation robotics continues to confront substantial challenges, particularly in achieving smooth, safe, and intuitive human-robot interactions for upper limb motor training. Many current systems depend on complex mechanical designs, direct physical contact, and multiple sensors, which not only elevate costs but also reduce accessibility. Additionally, delivering seamless weight compensation and precise motion tracking remains a highly complex undertaking. To overcome these obstacles, we have developed a novel magnetic-based actuation mechanism for end-effector robotic rehabilitation. This innovative approach enables smooth, non-contact force transmission, significantly enhancing patient safety and comfort during upper limb training. To ensure consistent performance, we integrated an Extended Kalman Filter (EKF) alongside a controller for real-time position tracking, allowing the system to maintain high accuracy or recover even in the event of sensor malfunction or failure. In a user study with 12 participants, 75% rated the system highly for its smoothness, while 66.7% commended its safety and effective weight compensation. The EKF demonstrated precise tracking performance, with root mean square error (RMSE) values remaining within acceptable limits (under 2 cm). By combining magnetic actuation with advanced closed-loop control algorithms, this system marks a significant advancement in the field of upper limb rehabilitation robotics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信