{"title":"The Prediction of Venous Thromboembolism Using Artificial Intelligence and Machine Learning in Lower Extremity Arthroplasty: A Systematic Review","authors":"Davood Dalil MD , Sina Esmaeili , Ehsan Safaee , Sajad Asgari , Nooshin Kejani MD","doi":"10.1016/j.artd.2025.101672","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Venous thromboembolism (VTE), including deep vein thrombosis and pulmonary embolism, is a common and serious complication following lower extremity arthroplasty, such as total hip and knee arthroplasty. Due to the increasing number of these surgeries, accurately predicting VTE risk is crucial. Traditional clinical prediction models often fall short due to their complexity and limited accuracy.</div></div><div><h3>Methods</h3><div>This Preferred Reporting Items for Systematic Review and Meta-Analyses–guided systematic review summarized the application of artificial intelligence (AI) and machine learning models in predicting VTE after total joint arthroplasty. Databases including PubMed, Scopus, Web of Science, and Embase were searched for relevant studies published up to January 2024. Eligible studies focused on the predictive accuracy of AI algorithms for VTE post arthroplasty and were assessed for quality using the Newcastle-Ottawa Scale.</div></div><div><h3>Results</h3><div>A total of 7 retrospective cohort studies, encompassing 579,454 patients, met the inclusion criteria. These studies primarily employed the extreme gradient boosting model, which generally demonstrated strong predictive performance with area under the curve values ranging from 0.71 to 0.982. Models like random forest and support vector machines also performed well. However, only 1 study included external validation, critical for assessing generalizability.</div></div><div><h3>Conclusions</h3><div>AI and machine learning models, particularly extreme gradient boosting, exhibit significant potential in predicting VTE after lower extremity arthroplasty, outperforming traditional clinical prediction tools. Yet, the need for external validation and high-quality, generalizable datasets remains critical before these models can be widely implemented in clinical practice. The study underscores the role of AI in preoperative planning to enhance patient outcomes in orthopaedic surgery.</div></div>","PeriodicalId":37940,"journal":{"name":"Arthroplasty Today","volume":"33 ","pages":"Article 101672"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthroplasty Today","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352344125000597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Venous thromboembolism (VTE), including deep vein thrombosis and pulmonary embolism, is a common and serious complication following lower extremity arthroplasty, such as total hip and knee arthroplasty. Due to the increasing number of these surgeries, accurately predicting VTE risk is crucial. Traditional clinical prediction models often fall short due to their complexity and limited accuracy.
Methods
This Preferred Reporting Items for Systematic Review and Meta-Analyses–guided systematic review summarized the application of artificial intelligence (AI) and machine learning models in predicting VTE after total joint arthroplasty. Databases including PubMed, Scopus, Web of Science, and Embase were searched for relevant studies published up to January 2024. Eligible studies focused on the predictive accuracy of AI algorithms for VTE post arthroplasty and were assessed for quality using the Newcastle-Ottawa Scale.
Results
A total of 7 retrospective cohort studies, encompassing 579,454 patients, met the inclusion criteria. These studies primarily employed the extreme gradient boosting model, which generally demonstrated strong predictive performance with area under the curve values ranging from 0.71 to 0.982. Models like random forest and support vector machines also performed well. However, only 1 study included external validation, critical for assessing generalizability.
Conclusions
AI and machine learning models, particularly extreme gradient boosting, exhibit significant potential in predicting VTE after lower extremity arthroplasty, outperforming traditional clinical prediction tools. Yet, the need for external validation and high-quality, generalizable datasets remains critical before these models can be widely implemented in clinical practice. The study underscores the role of AI in preoperative planning to enhance patient outcomes in orthopaedic surgery.
期刊介绍:
Arthroplasty Today is a companion journal to the Journal of Arthroplasty. The journal Arthroplasty Today brings together the clinical and scientific foundations for joint replacement of the hip and knee in an open-access, online format. Arthroplasty Today solicits manuscripts of the highest quality from all areas of scientific endeavor that relate to joint replacement or the treatment of its complications, including those dealing with patient outcomes, economic and policy issues, prosthetic design, biomechanics, biomaterials, and biologic response to arthroplasty. The journal focuses on case reports. It is the purpose of Arthroplasty Today to present material to practicing orthopaedic surgeons that will keep them abreast of developments in the field, prove useful in the care of patients, and aid in understanding the scientific foundation of this subspecialty area of joint replacement. The international members of the Editorial Board provide a worldwide perspective for the journal''s area of interest. Their participation ensures that each issue of Arthroplasty Today provides the reader with timely, peer-reviewed articles of the highest quality.