Innovative valorization of waste tire by integrating pyrolysis with Steam Rankine Cycle, multi-generation, and desalination: Novel process design, simulation and comprehensive analysis

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Yusha Hu, Jianzhao Zhou, Qiming Qian, Jingzheng Ren
{"title":"Innovative valorization of waste tire by integrating pyrolysis with Steam Rankine Cycle, multi-generation, and desalination: Novel process design, simulation and comprehensive analysis","authors":"Yusha Hu,&nbsp;Jianzhao Zhou,&nbsp;Qiming Qian,&nbsp;Jingzheng Ren","doi":"10.1016/j.energy.2025.135812","DOIUrl":null,"url":null,"abstract":"<div><div>Waste tire pyrolysis has gained attention as a promising solution for the sustainable management of discarded tires, yet existing designs often overlook efficient exhaust gas treatment and waste heat recovery. To fill this gap, this study designed and simulated an integrated process using Aspen Plus combining waste tire pyrolysis with combined cooling, heat, and power, a Steam Rankine Cycle (SRC), desalination, and monoethanolamine (MEA)-based carbon capture system. The results indicate that the energy efficiency and exergy efficiency of the process are 48.76% and 51.5%, respectively. The techno-economic analysis suggests that government agencies should provide subsidies of at least 38.43 $/ton of waste to achieve positive net present value. Additionally, it is possible to increase the selling price of pyrolysis oil to 0.488 $/kg or reduce the purchase price of waste tires or hydrogen to 0.077 $/kg, 1.591$/kg, respectively, for the proposed process to achieve positive returns within 20 years. These findings demonstrate the potential of the proposed system to enhance both the energy utilization and economic viability of waste tire pyrolysis.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"323 ","pages":"Article 135812"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225014549","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Waste tire pyrolysis has gained attention as a promising solution for the sustainable management of discarded tires, yet existing designs often overlook efficient exhaust gas treatment and waste heat recovery. To fill this gap, this study designed and simulated an integrated process using Aspen Plus combining waste tire pyrolysis with combined cooling, heat, and power, a Steam Rankine Cycle (SRC), desalination, and monoethanolamine (MEA)-based carbon capture system. The results indicate that the energy efficiency and exergy efficiency of the process are 48.76% and 51.5%, respectively. The techno-economic analysis suggests that government agencies should provide subsidies of at least 38.43 $/ton of waste to achieve positive net present value. Additionally, it is possible to increase the selling price of pyrolysis oil to 0.488 $/kg or reduce the purchase price of waste tires or hydrogen to 0.077 $/kg, 1.591$/kg, respectively, for the proposed process to achieve positive returns within 20 years. These findings demonstrate the potential of the proposed system to enhance both the energy utilization and economic viability of waste tire pyrolysis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信