Xiaoyu Yue , Lijun Fu , Siyang Liao , Jian Xu , Deping Ke , Huiji Wang , Shuaishuai Feng , Jiaquan Yang , Xuehao He
{"title":"A source-load collaborative stochastic optimization method considering the electricity price uncertainty and industrial load peak regulation compensation benefit","authors":"Xiaoyu Yue , Lijun Fu , Siyang Liao , Jian Xu , Deping Ke , Huiji Wang , Shuaishuai Feng , Jiaquan Yang , Xuehao He","doi":"10.1016/j.ijepes.2025.110630","DOIUrl":null,"url":null,"abstract":"<div><div>Energy-intensive industrial load offers substantial capacity and rapid adjustment capabilities, which can be effectively coordinated with deep peak regulation (DPR) methods of thermal power to optimize the peak regulation state of the system. The uncertainty of electricity prices and the current peak regulation compensation mechanism significantly affect the economic viability of industrial load regulation. In this study, electrolytic aluminum load (EAL) is used as a representative industrial load. This paper combines the complete ensemble empirical mode decomposition adaptive noise (CEEMDAN), whale optimization algorithm (WOA), and long short-term memory network (LSTM) to propose a CEEMDAN-WOA-LSTM prediction model for electricity price scenarios. Subsequently, comprehensive cost and fine adjustment models for electrolytic aluminum load (EAL) are developed, incorporating the current peak regulation compensation mechanism. Finally, a source-load collaborative stochastic optimization method is proposed, integrating the scenario method and chance constraints. The effectiveness of the proposed scheme is verified using a real regional system, demonstrating significant reductions in total social peak regulation costs, a substantial decrease in renewable energy (RE) abandonment rates, reduced frequency of thermal power DPR, and improved economic efficiency of thermal power. Additionally, the current peak regulation compensation mechanism effectively guarantees the benefits of EAL and encourages its adjustment willingness.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"167 ","pages":"Article 110630"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525001814","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Energy-intensive industrial load offers substantial capacity and rapid adjustment capabilities, which can be effectively coordinated with deep peak regulation (DPR) methods of thermal power to optimize the peak regulation state of the system. The uncertainty of electricity prices and the current peak regulation compensation mechanism significantly affect the economic viability of industrial load regulation. In this study, electrolytic aluminum load (EAL) is used as a representative industrial load. This paper combines the complete ensemble empirical mode decomposition adaptive noise (CEEMDAN), whale optimization algorithm (WOA), and long short-term memory network (LSTM) to propose a CEEMDAN-WOA-LSTM prediction model for electricity price scenarios. Subsequently, comprehensive cost and fine adjustment models for electrolytic aluminum load (EAL) are developed, incorporating the current peak regulation compensation mechanism. Finally, a source-load collaborative stochastic optimization method is proposed, integrating the scenario method and chance constraints. The effectiveness of the proposed scheme is verified using a real regional system, demonstrating significant reductions in total social peak regulation costs, a substantial decrease in renewable energy (RE) abandonment rates, reduced frequency of thermal power DPR, and improved economic efficiency of thermal power. Additionally, the current peak regulation compensation mechanism effectively guarantees the benefits of EAL and encourages its adjustment willingness.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.