Guoqiang Zhang , Zhiqi Wang , Diandian Shi , Guangbo Liu , Tao He , Jingli Wu , Jinzhi Zhang , Jinhu Wu
{"title":"Rational design of H2 production sites for achieving photoconversion of CO2 with H2O into widely adjustable syngas and highly effective H2 evolution","authors":"Guoqiang Zhang , Zhiqi Wang , Diandian Shi , Guangbo Liu , Tao He , Jingli Wu , Jinzhi Zhang , Jinhu Wu","doi":"10.1016/j.greenca.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><div>The photoconversion of CO<sub>2</sub> with H<sub>2</sub>O into widely tunable syngas (CO and H<sub>2</sub>) or pure H<sub>2</sub> production is regarded as a promising strategy to mitigate escalating energy shortages and climate change. Herein, anchoring the H<sub>2</sub> production sites onto the surface of CdIn<sub>2</sub>S<sub>4</sub> (CIS) with a nanoscale hollow sphere allows for the photoconversion of CO<sub>2</sub> into syngas and water splitting to H<sub>2</sub>. The CO/H<sub>2</sub> ratio can be realized in a remarkably wide range from 1:0.38 to 1:3.76. The optimized CIS/Co-PBA/NaY-5 hybrid exhibits superior photocatalytic syngas evolution up to 1458.48 μmol·g<sup>−1</sup>·h<sup>−1</sup> (H<sub>2</sub>/CO, 1152.29/306.19 μmol·g<sup>−1</sup>·h<sup>−1</sup>), and the H<sub>2</sub> evolution rate increases by 431.70% compared with CIS. The CIS/Co-PBA/NaY-5 hybrid exhibited not only superior H<sub>2</sub> evolution but also recyclability. The experimental, energy-dispersive X-ray spectroscopy, and electron spin resonance results indicate that the Co sites serve as H<sub>2</sub> production sites and promote the H<sub>2</sub> evolution reaction. In addition, the construction of a p-n heterojunction with a special micromorphology is beneficial for the separation/transfer of carriers.</div></div>","PeriodicalId":100595,"journal":{"name":"Green Carbon","volume":"3 1","pages":"Pages 11-21"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Carbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950155524000855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The photoconversion of CO2 with H2O into widely tunable syngas (CO and H2) or pure H2 production is regarded as a promising strategy to mitigate escalating energy shortages and climate change. Herein, anchoring the H2 production sites onto the surface of CdIn2S4 (CIS) with a nanoscale hollow sphere allows for the photoconversion of CO2 into syngas and water splitting to H2. The CO/H2 ratio can be realized in a remarkably wide range from 1:0.38 to 1:3.76. The optimized CIS/Co-PBA/NaY-5 hybrid exhibits superior photocatalytic syngas evolution up to 1458.48 μmol·g−1·h−1 (H2/CO, 1152.29/306.19 μmol·g−1·h−1), and the H2 evolution rate increases by 431.70% compared with CIS. The CIS/Co-PBA/NaY-5 hybrid exhibited not only superior H2 evolution but also recyclability. The experimental, energy-dispersive X-ray spectroscopy, and electron spin resonance results indicate that the Co sites serve as H2 production sites and promote the H2 evolution reaction. In addition, the construction of a p-n heterojunction with a special micromorphology is beneficial for the separation/transfer of carriers.