{"title":"CFD analysis of the intensification mechanism of bubble breakup by perforated plates in a bubble column","authors":"Rongtao Wang, Xinya Guo, Mengqin Zhan, Yefei Liu","doi":"10.1016/j.cep.2025.110288","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional bubble column reactors suffer from some drawbacks like severe backmixing and poor heat/mass transfer performance. The process intensification by the utilization of perforated plates has been an important strategy to overcome these problems. However, a fundamental understanding of the bubble breakup by perforated plates is still very limited. CFD simulations are carried out to reveal the interaction between the rising bubbles and perforated plates. It is found that no bubbles break up when they just pass through the hole. A bubble can be broken into three small daughter bubbles when it collides with the bridge connecting three holes. The bubble breakup is mainly attributed to the bridge cutting, whereas it is not sensitive to large hole diameters. A large bubble cap is formed underneath the plate due to very small hole diameter. The plate thickness has no significant influence on bubble breakup. When the inclined angle of a perforated plate is larger than 45°, the bubbles slide beneath the plate more readily and no bubbles pass through it. The perforated plate with large inclined angle fails to induce bubble breakup. This study would provide deep insights into bubble breakup mechanism related to process intensification by perforated plates.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"213 ","pages":"Article 110288"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125001370","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional bubble column reactors suffer from some drawbacks like severe backmixing and poor heat/mass transfer performance. The process intensification by the utilization of perforated plates has been an important strategy to overcome these problems. However, a fundamental understanding of the bubble breakup by perforated plates is still very limited. CFD simulations are carried out to reveal the interaction between the rising bubbles and perforated plates. It is found that no bubbles break up when they just pass through the hole. A bubble can be broken into three small daughter bubbles when it collides with the bridge connecting three holes. The bubble breakup is mainly attributed to the bridge cutting, whereas it is not sensitive to large hole diameters. A large bubble cap is formed underneath the plate due to very small hole diameter. The plate thickness has no significant influence on bubble breakup. When the inclined angle of a perforated plate is larger than 45°, the bubbles slide beneath the plate more readily and no bubbles pass through it. The perforated plate with large inclined angle fails to induce bubble breakup. This study would provide deep insights into bubble breakup mechanism related to process intensification by perforated plates.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.