Critical care studies using large language models based on electronic healthcare records: A technical note

Zhongheng Zhang , Hongying Ni
{"title":"Critical care studies using large language models based on electronic healthcare records: A technical note","authors":"Zhongheng Zhang ,&nbsp;Hongying Ni","doi":"10.1016/j.jointm.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of large language models (LLMs) in clinical medicine, particularly in critical care, has introduced transformative capabilities for analyzing and managing complex medical information. This technical note explores the application of LLMs, such as generative pretrained transformer 4 (GPT-4) and Qwen-Chat, in interpreting electronic healthcare records to assist with rapid patient condition assessments, predict sepsis, and automate the generation of discharge summaries. The note emphasizes the significance of LLMs in processing unstructured data from electronic health records (EHRs), extracting meaningful insights, and supporting personalized medicine through nuanced understanding of patient histories. Despite the technical complexity of deploying LLMs in clinical settings, this document provides a comprehensive guide to facilitate the effective integration of LLMs into clinical workflows, focusing on the use of DashScope's application programming interface (API) services for judgment on patient prognosis and organ support recommendations based on natural language in EHRs. By illustrating practical steps and best practices, this work aims to lower the technical barriers for clinicians and researchers, enabling broader adoption of LLMs in clinical research and practice to enhance patient care and outcomes.</div></div>","PeriodicalId":73799,"journal":{"name":"Journal of intensive medicine","volume":"5 2","pages":"Pages 137-150"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of intensive medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667100X24001002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of large language models (LLMs) in clinical medicine, particularly in critical care, has introduced transformative capabilities for analyzing and managing complex medical information. This technical note explores the application of LLMs, such as generative pretrained transformer 4 (GPT-4) and Qwen-Chat, in interpreting electronic healthcare records to assist with rapid patient condition assessments, predict sepsis, and automate the generation of discharge summaries. The note emphasizes the significance of LLMs in processing unstructured data from electronic health records (EHRs), extracting meaningful insights, and supporting personalized medicine through nuanced understanding of patient histories. Despite the technical complexity of deploying LLMs in clinical settings, this document provides a comprehensive guide to facilitate the effective integration of LLMs into clinical workflows, focusing on the use of DashScope's application programming interface (API) services for judgment on patient prognosis and organ support recommendations based on natural language in EHRs. By illustrating practical steps and best practices, this work aims to lower the technical barriers for clinicians and researchers, enabling broader adoption of LLMs in clinical research and practice to enhance patient care and outcomes.
使用基于电子医疗记录的大型语言模型的重症监护研究:技术说明
大型语言模型(llm)在临床医学中的集成,特别是在重症监护中,为分析和管理复杂的医疗信息引入了变革能力。本技术说明探讨了llm(如生成预训练变压器4 (GPT-4)和Qwen-Chat)在解释电子医疗记录中的应用,以协助快速评估患者状况、预测败血症和自动生成出院摘要。该说明强调了法学硕士在处理电子健康记录(EHRs)中的非结构化数据、提取有意义的见解以及通过细致入微地了解患者病史来支持个性化医疗方面的重要性。尽管在临床环境中部署法学硕士具有技术复杂性,但本文提供了一个全面的指南,以促进法学硕士与临床工作流程的有效集成,重点介绍了在电子病历中使用DashScope的应用程序编程接口(API)服务来判断患者预后和基于自然语言的器官支持建议。通过说明实际步骤和最佳实践,这项工作旨在降低临床医生和研究人员的技术障碍,使法学硕士在临床研究和实践中得到更广泛的采用,以提高患者的护理和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of intensive medicine
Journal of intensive medicine Critical Care and Intensive Care Medicine
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
58 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信