Tanja Dravec , Mirjana Mikalački , Andrej Taranenko
{"title":"Graphs with span 1 and shortest optimal walks","authors":"Tanja Dravec , Mirjana Mikalački , Andrej Taranenko","doi":"10.1016/j.amc.2025.129433","DOIUrl":null,"url":null,"abstract":"<div><div>A span of a given graph <em>G</em> is the maximum distance that two players can keep at all times while visiting all vertices (edges) of <em>G</em> and moving according to certain rules, that produces different variants of span. We prove that the vertex and edge span of the same variant can differ by at most 1 and present a graph where the difference is exactly 1. For all variants of vertex span we present a lower bound in terms of the girth of the graph. Then we study graphs with the strong vertex span equal to 1. We present some nice properties of such graphs and show that interval graphs are contained in the class of graphs having the strong vertex span equal to 1. Finally, we present an algorithm that returns the minimum number of moves needed for both players to traverse all vertices of the given graph <em>G</em> such that in each move the distance between players equals at least the chosen vertex span of <em>G</em>.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129433"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001602","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A span of a given graph G is the maximum distance that two players can keep at all times while visiting all vertices (edges) of G and moving according to certain rules, that produces different variants of span. We prove that the vertex and edge span of the same variant can differ by at most 1 and present a graph where the difference is exactly 1. For all variants of vertex span we present a lower bound in terms of the girth of the graph. Then we study graphs with the strong vertex span equal to 1. We present some nice properties of such graphs and show that interval graphs are contained in the class of graphs having the strong vertex span equal to 1. Finally, we present an algorithm that returns the minimum number of moves needed for both players to traverse all vertices of the given graph G such that in each move the distance between players equals at least the chosen vertex span of G.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.