{"title":"Effects of acute low-temperature stress on respiratory metabolism, antioxidants, and metabolomics of red swamp crayfish, Procambarus clarkii","authors":"Yu Ding , Wenbin Sha , Yunfei Sun , Yongxu Cheng","doi":"10.1016/j.cbpb.2025.111095","DOIUrl":null,"url":null,"abstract":"<div><div>Crayfish (<em>Procambarus clarkii</em>) aquaculture is threatened by abrupt temperature decreases caused by climatic phenomena, such as cold waves and seasonal fluctuations. In this study, crayfish were exposed to an abrupt temperature change from 17 °C to 7 °C for 24 h to investigate the effects of acute low-temperatures on respiratory metabolism, antioxidants, and metabolomics. The results showed that acute low-temperatures significantly reduced the activities of pyruvate kinase, lactate dehydrogenase, and succinate dehydrogenase in the gills and hemolymph, associated with decreases in anaerobic and aerobic respiratory capacities, and significant decreases in oxygen consumption, ammonia excretion, and maximum metabolic rates. Antioxidant enzymes in the hepatopancreas and hemolymph initially increased then decreased within 24 h. Metabolomics revealed that glycerophospholipid metabolism and glycosylphosphatidylinositol anchor biosynthesis pathways responded to acute low-temperatures, with glycerophospholipids being the most significantly differentially expressed metabolites. These results supported the hypothesis that crayfish exhibit lower metabolic activity at low temperatures. Our data provide mechanistic insight into the biological changes induced by acute low-temperature and may provide insight into culture of <em>P. clarkii</em> in cold waters.</div></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":"278 ","pages":"Article 111095"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495925000260","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Crayfish (Procambarus clarkii) aquaculture is threatened by abrupt temperature decreases caused by climatic phenomena, such as cold waves and seasonal fluctuations. In this study, crayfish were exposed to an abrupt temperature change from 17 °C to 7 °C for 24 h to investigate the effects of acute low-temperatures on respiratory metabolism, antioxidants, and metabolomics. The results showed that acute low-temperatures significantly reduced the activities of pyruvate kinase, lactate dehydrogenase, and succinate dehydrogenase in the gills and hemolymph, associated with decreases in anaerobic and aerobic respiratory capacities, and significant decreases in oxygen consumption, ammonia excretion, and maximum metabolic rates. Antioxidant enzymes in the hepatopancreas and hemolymph initially increased then decreased within 24 h. Metabolomics revealed that glycerophospholipid metabolism and glycosylphosphatidylinositol anchor biosynthesis pathways responded to acute low-temperatures, with glycerophospholipids being the most significantly differentially expressed metabolites. These results supported the hypothesis that crayfish exhibit lower metabolic activity at low temperatures. Our data provide mechanistic insight into the biological changes induced by acute low-temperature and may provide insight into culture of P. clarkii in cold waters.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.