{"title":"Extended Bargmann FDA and non-relativistic gravity","authors":"Ariana Muñoz , Gustavo Rubio , Sebastián Salgado","doi":"10.1016/j.nuclphysb.2025.116885","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider the construction of a free differential algebra as an extension of the extended Bargmann algebra in arbitrary dimensions. This is achieved by introducing a new Maurer-Cartan equation for a three-form gauge multiplet in the adjoint representation of the extended Bargmann algebra. The new Maurer-Cartan equation is provided of non-triviality by means of the introduction of a four-form cocycle, representative of a Chevalley-Eilenberg cohomology class. We derive the corresponding dual <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> algebra and, by using the formalism of non-linear realizations, propose a five-dimensional gauge invariant action principle. Then, we derive the corresponding equations of motion and study how the presence of the three-form gauge fields and the four-cocycle modify the corresponding non-relativistic dynamics.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1014 ","pages":"Article 116885"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S055032132500094X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we consider the construction of a free differential algebra as an extension of the extended Bargmann algebra in arbitrary dimensions. This is achieved by introducing a new Maurer-Cartan equation for a three-form gauge multiplet in the adjoint representation of the extended Bargmann algebra. The new Maurer-Cartan equation is provided of non-triviality by means of the introduction of a four-form cocycle, representative of a Chevalley-Eilenberg cohomology class. We derive the corresponding dual algebra and, by using the formalism of non-linear realizations, propose a five-dimensional gauge invariant action principle. Then, we derive the corresponding equations of motion and study how the presence of the three-form gauge fields and the four-cocycle modify the corresponding non-relativistic dynamics.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.