Improving emissivity measurement accuracy using FTIR-based infrared ellipsometer for narrow-angle directional thermal radiation

IF 2.3 3区 物理与天体物理 Q2 OPTICS
Azusa Sudo , Ryunosuke Moriya , Sumitaka Tachikawa , Atsushi Sakurai
{"title":"Improving emissivity measurement accuracy using FTIR-based infrared ellipsometer for narrow-angle directional thermal radiation","authors":"Azusa Sudo ,&nbsp;Ryunosuke Moriya ,&nbsp;Sumitaka Tachikawa ,&nbsp;Atsushi Sakurai","doi":"10.1016/j.jqsrt.2025.109446","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate emissivity measurement is essential for characterizing metasurfaces with highly directional thermal radiation. Traditional Fourier-transform infrared (FTIR) spectroscopy, particularly when using focusing optics, introduces measurement artifacts due to divergence angle effects, leading to underestimated emissivity and angular deviations. This study investigates the use of FTIR-based infrared ellipsometer to improve emissivity measurement accuracy for narrow-angle thermal emitters. By systematically comparing a focusing FTIR system and an FTIR-based ellipsometer, we quantitatively evaluate the impact of divergence angle on emissivity measurements. The results indicate that the divergence angle in focusing FTIR systems leads to a reduction in measured emissivity to less than two-thirds of the expected value, while the ellipsometer, when properly configured, mitigates these errors through controlled collimation of incident light. Furthermore, we propose a method to determine and correct divergence angle effects using mathematical modeling and optical path analysis. The divergence angles were measured as 11°–13° for the focusing FTIR system and 1.04°–2.08° for the ellipsometer, demonstrating the effectiveness of ellipsometer in reducing measurement uncertainties. These findings provide valuable insights for optimizing measurement techniques in narrow-angle thermal radiation characterization. By improving emissivity measurement accuracy, this study facilitates advancements in thermophotovoltaics, infrared sensing, and radiative heat transfer applications.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"340 ","pages":"Article 109446"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407325001086","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate emissivity measurement is essential for characterizing metasurfaces with highly directional thermal radiation. Traditional Fourier-transform infrared (FTIR) spectroscopy, particularly when using focusing optics, introduces measurement artifacts due to divergence angle effects, leading to underestimated emissivity and angular deviations. This study investigates the use of FTIR-based infrared ellipsometer to improve emissivity measurement accuracy for narrow-angle thermal emitters. By systematically comparing a focusing FTIR system and an FTIR-based ellipsometer, we quantitatively evaluate the impact of divergence angle on emissivity measurements. The results indicate that the divergence angle in focusing FTIR systems leads to a reduction in measured emissivity to less than two-thirds of the expected value, while the ellipsometer, when properly configured, mitigates these errors through controlled collimation of incident light. Furthermore, we propose a method to determine and correct divergence angle effects using mathematical modeling and optical path analysis. The divergence angles were measured as 11°–13° for the focusing FTIR system and 1.04°–2.08° for the ellipsometer, demonstrating the effectiveness of ellipsometer in reducing measurement uncertainties. These findings provide valuable insights for optimizing measurement techniques in narrow-angle thermal radiation characterization. By improving emissivity measurement accuracy, this study facilitates advancements in thermophotovoltaics, infrared sensing, and radiative heat transfer applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信