Haiqin Nong , Weijun Shen , Yuhan Huang , Sidan Lyu , Mingquan Zhao , Xianwei Song
{"title":"Modeling carbon transfers in subtropical Chinese fir plantations: The role of stemflow and litter leachate","authors":"Haiqin Nong , Weijun Shen , Yuhan Huang , Sidan Lyu , Mingquan Zhao , Xianwei Song","doi":"10.1016/j.jhydrol.2025.133158","DOIUrl":null,"url":null,"abstract":"<div><div>Dissolved Organic Carbon (DOC) plays a crucial role in forest ecosystems by facilitating carbon turnover and enabling nutrient transfer. However, the DOC fluxes in stemflow and litter leachate are often overlooked. To address this issue, a series of simulation experiments were conducted in Chinese fir (<em>Cunninghamia lanceolata</em>) plantations with trees aged 5, 8, 11 and 15 years to elucidate the impact of stemflow and litter leachate on carbon flux into the soil. A quantitative relationship was established between DOC fluxes in stemflow and litter leachate, incorporating diameter at breast height (DBH) and rainfall as variables. The average DOC flux in stemflow across the four plantations was 3.82 g C m<sup>−2</sup> yr<sup>−1</sup>, showing an increasing trend with age from 2.89 ± 1.02 to 4.43 ± 2.11 g C m<sup>−2</sup> yr<sup>−1</sup>. The cumulative input fluxes of DOC from stemflow and litter leachate in four plantations since planting were 272, 1020, 2021 and 3470 g C m<sup>−2</sup>, respectively. The DOC fluxes from stemflow and litter leachate in 15-year-old Chinese fir forest accounted for 0.96 % and 57.79 % of the annual net primary productivity (680.35 g C m<sup>−2</sup> yr<sup>−1</sup>), highlighting the significant role of DOC fluxes in the carbon cycle of these ecosystems. This simulation approach effectively estimates the fluxes of DOC in stemflow and litter leachate, thereby substantially influencing assessments of carbon budgets in forest ecosystems.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"658 ","pages":"Article 133158"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425004962","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Dissolved Organic Carbon (DOC) plays a crucial role in forest ecosystems by facilitating carbon turnover and enabling nutrient transfer. However, the DOC fluxes in stemflow and litter leachate are often overlooked. To address this issue, a series of simulation experiments were conducted in Chinese fir (Cunninghamia lanceolata) plantations with trees aged 5, 8, 11 and 15 years to elucidate the impact of stemflow and litter leachate on carbon flux into the soil. A quantitative relationship was established between DOC fluxes in stemflow and litter leachate, incorporating diameter at breast height (DBH) and rainfall as variables. The average DOC flux in stemflow across the four plantations was 3.82 g C m−2 yr−1, showing an increasing trend with age from 2.89 ± 1.02 to 4.43 ± 2.11 g C m−2 yr−1. The cumulative input fluxes of DOC from stemflow and litter leachate in four plantations since planting were 272, 1020, 2021 and 3470 g C m−2, respectively. The DOC fluxes from stemflow and litter leachate in 15-year-old Chinese fir forest accounted for 0.96 % and 57.79 % of the annual net primary productivity (680.35 g C m−2 yr−1), highlighting the significant role of DOC fluxes in the carbon cycle of these ecosystems. This simulation approach effectively estimates the fluxes of DOC in stemflow and litter leachate, thereby substantially influencing assessments of carbon budgets in forest ecosystems.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.