Amit K. Praharaj, Tejas Byregowda, Srikanth Bontha, P.S. Suvin
{"title":"Mechanical and chemical post-treatments for enhancement in tribological performance of laser powder directed energy deposited Inconel 625","authors":"Amit K. Praharaj, Tejas Byregowda, Srikanth Bontha, P.S. Suvin","doi":"10.1016/j.matlet.2025.138446","DOIUrl":null,"url":null,"abstract":"<div><div>Laser powder-directed energy deposition (LP-DED) technique has shown tremendous potential to fabricate high-performance superalloy parts for real engineering applications. However, certain disadvantages like poor surface quality and incompetent mechanical and wear properties limit its practical usage. Hence, the current work investigates the effect of different post-processing techniques, including laser shock peening (single shot) (LSP1), laser shock peening (three shots) (LSP2), shot peening (high pressure) (SP1), shot peening (low pressure) (SP2), glass bead blasting (GB), sand blasting (SB), and electroless coating (EC) on the surface quality, hardness, and wear resistance of Inconel 625 (IN625) samples fabricated by LP-DED technique. EC sample resulted in the least surface roughness value (0.09 µm), whereas LSP2 sample exhibited the highest increase of 32.4 % in hardness compared to the as-polished (AP) sample. This can be attributed to grain refinement and the plastic deformation in the samples. Further, the wear test confirmed that LSP2 sample resulted in the lowest coefficient of friction (0.6) and wear rate (0.58 × 10<sup>-4</sup> mm<sup>3</sup>/N.m) among the post-processed samples.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"391 ","pages":"Article 138446"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25004756","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Laser powder-directed energy deposition (LP-DED) technique has shown tremendous potential to fabricate high-performance superalloy parts for real engineering applications. However, certain disadvantages like poor surface quality and incompetent mechanical and wear properties limit its practical usage. Hence, the current work investigates the effect of different post-processing techniques, including laser shock peening (single shot) (LSP1), laser shock peening (three shots) (LSP2), shot peening (high pressure) (SP1), shot peening (low pressure) (SP2), glass bead blasting (GB), sand blasting (SB), and electroless coating (EC) on the surface quality, hardness, and wear resistance of Inconel 625 (IN625) samples fabricated by LP-DED technique. EC sample resulted in the least surface roughness value (0.09 µm), whereas LSP2 sample exhibited the highest increase of 32.4 % in hardness compared to the as-polished (AP) sample. This can be attributed to grain refinement and the plastic deformation in the samples. Further, the wear test confirmed that LSP2 sample resulted in the lowest coefficient of friction (0.6) and wear rate (0.58 × 10-4 mm3/N.m) among the post-processed samples.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive