Apu Saha, Rupam Sahoo, Shyam Chand Pal, Sayaka Uchida, Madhab C. Das
{"title":"Polyoxometalates (POMs) as Proton Conductors","authors":"Apu Saha, Rupam Sahoo, Shyam Chand Pal, Sayaka Uchida, Madhab C. Das","doi":"10.1021/acsenergylett.5c00373","DOIUrl":null,"url":null,"abstract":"The development of solid-state proton conductors (SSPCs) is of significant interest for their deployment as proton exchange membranes in fuel cell (PEMFC) technology. The <i>aqueous medium</i> synthesis with ample <i>intrinsic</i> proton sources has made crystalline polyoxometalates (POMs) promising SSPCs over others. Herein, we aim to showcase the solitary POMs and their hybrids (with polymers and MOFs/COFs) as SSPCs by organizing them based on the approaches taken up (<i>intrinsic</i> or <i>extrinsic</i>) to install various protonic sources while positioning them within specific components of the POM frameworks. Particular attention is paid with a critical discussion on whether the conductivity is purely protonic or a combination of protonic and other ionic conductivity (majorly originating from charge balancing counterions) and thus recommend the terminology to be used. The “Critical Discussion” section provides in-depth insights which are often overlooked, while the future recommendations are made in “Future Outlook”.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"30 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00373","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of solid-state proton conductors (SSPCs) is of significant interest for their deployment as proton exchange membranes in fuel cell (PEMFC) technology. The aqueous medium synthesis with ample intrinsic proton sources has made crystalline polyoxometalates (POMs) promising SSPCs over others. Herein, we aim to showcase the solitary POMs and their hybrids (with polymers and MOFs/COFs) as SSPCs by organizing them based on the approaches taken up (intrinsic or extrinsic) to install various protonic sources while positioning them within specific components of the POM frameworks. Particular attention is paid with a critical discussion on whether the conductivity is purely protonic or a combination of protonic and other ionic conductivity (majorly originating from charge balancing counterions) and thus recommend the terminology to be used. The “Critical Discussion” section provides in-depth insights which are often overlooked, while the future recommendations are made in “Future Outlook”.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.